欢迎访问作物学报,今天是

作物学报 ›› 2006, Vol. 32 ›› Issue (05): 716-722.

• 研究论文 • 上一篇    下一篇

普通玉米主要营养品质性状的遗传效应分析

兰海;谭登峰;高世斌;唐祈林;曹墨菊;潘光堂;荣廷昭   

  1. 四川农业大学玉米研究所,四川雅安 625014
  • 收稿日期:2004-10-19 修回日期:1900-01-01 出版日期:2006-05-12 网络出版日期:2006-05-12
  • 通讯作者: 荣廷昭

Genetic Analysis of Main Nutrient Quality Characters in Normal Maize

LAN Hai; TAN Deng-Feng; GAO Shi-Bin; TANG Qi-Lin; CAO Mo-Ju; PAN Guang-Tang and RONG Ting-Zhao   

  1. Maize Research Institute, Sichuan Agricultural University, Ya’an 625014, Sichuan, China
  • Received:2004-10-19 Revised:1900-01-01 Published:2006-05-12 Published online:2006-05-12
  • Contact: RONG Ting-Zhao

摘要:

用13个普通玉米自交系按NCⅡ设计(7×6)研究了普通玉米主要营养品质性状的遗传效应。结果表明,普通玉米主要营养品质性状的遗传受种子二倍体胚、三倍体胚乳、细胞质和二倍体母体植株4套遗传体系的控制;主要品质性状4套遗传体系的效应值之间无太大的差异,蛋白质、淀粉和赖氨酸含量的胚遗传效应全部体现为胚加性遗传效应,而4种品质性状的胚乳遗传效应则全部由胚乳显性遗传效应构成;母体遗传效应主要表现为母体加性效应;遗传效应预测值表明亲本9636、99S2041-1-1-1和478在普通玉米品质改良中可能有一定的应用潜力。结果还发现,不同品质性状间存在不同程度的遗传相关,因此对这些性状进行间接选择或杂种优势利用均可取得一定的效果。

关键词: 玉米, 营养品质性状, 遗传效应, 近红外线光谱技术, 遗传方差与协方差

Abstract:

Thirteen inbred lines were used in incomplete diallel crosses (7×6) to analyze genetic effect of main nutrient quality characters in normal maize. The results indicated that main nutrient quality characters were controlled by embryo, endosperm, cytoplasmic and maternal genetic effects, which did not have much more difference among each other. The embryo genetic effects were represented as embryo additive effects of protein, starch and oil content. Endosperm effects of these main nutrient quality traits were all represented as endosperm dominance effects, and maternal additive effects was more important than maternal dominance effects. Predicted genetic effects showed that inbred lines 9636, 99s2041-1-1-1 and 478 were better than other parents, their genetic effects could play the role on the improvement of main nutrient quality characters in normal maize. Correlation analysis showed that there were different degree of genetic correlations between different nutrient quality characters; these quality characters could be improved by indirect selection and utilization of heterosis. The method applied in this study revealed much more genetic information than traditional NCⅡ analytic method. The results revealed by traditional NCⅡ analytic method could cooperate with Zhu’s method to instruct our breeding practice exactly. Because by the Zhu’s method, the total genetic effects is divided into some small parts, and which are difficult to use in practice. But it could help us to realize these complex characters such as nutrient characters more deeply than ever. The traditional NCⅡ analyze method could be easy operated in breeding practice. In this study, the experiment data were analyzed by using traditional NCⅡ analytic method. The results indicated that these four main nutrient quality characters all were controlled by female parent’s genetic effects, which were significantly different. These genetic effects, such as embryo, endosperm and maternal genetic effects have very complex relationships between each other. These three genetic effects all were controlled more or less by female parent and couldn’t be distinguish clearly. In fact, there were 2/3 endosperms as same as female parent in genetic components. And characters of kernel were controlled mostly by female parent in whole growing stage. So that, these female parent genetic variance of four main nutrient quality characters all were significantly different, because these genetic variance included some other genetic components. For oil content, the genetic variance of female parent and male parent were significantly different at 0.01 and 0.05 probability levels respectively. These correspond with high oil content maize breeding and utilization in practice, for example, the selection and synthesis of high oil content maize population and the xenia effect on normal maize of high oil content. In this study, P1, P2, F1 and F2 generation were need to predicate every genetic variance, covariance, effect and so on for four main nutrient quality characters. This method could be improved by increasing other generations, such as backcross generations, and by strictly experimental control and so on.

Key words: Normal maize, Nutrient quality character, Genetic effect, Near-infrared spectroscopy (NIRS), Genetic variance and covariance

中图分类号: 

  • S513
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!