欢迎访问作物学报,今天是

作物学报 ›› 2006, Vol. 32 ›› Issue (05): 709-716.

• 研究论文 • 上一篇    下一篇

应用近红外光谱技术分析稻米蛋白质含量

毕京翠;张文伟;肖应辉;王海莲;江玲;刘玲珑;万向元; 翟虎渠;万建民   

  1. 中国农业科学院作物科学研究所,北京100081
  • 收稿日期:2005-05-16 修回日期:1900-01-01 出版日期:2006-05-12 网络出版日期:2006-05-12
  • 通讯作者: 万建民

Analysis for Protein Content in Rice by Near Infrared Reflectance Spectroscopy (NIRS) Technique

BI Jing-Cui; ZHANG Wen-Wei; XIAO Ying-Hui; WANG Hai-Lian; JIANG Ling; LIU Ling-Long; WAN Xiang-Yuan; ZHAI Hu-Qu and WAN Jian-Min   

  1. China Academy of Agricultural Sciences, Beijing 100081; 3 Institute of Crop Sciences, China Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2005-05-16 Revised:1900-01-01 Published:2006-05-12 Published online:2006-05-12
  • Contact: WAN Jian-Min

摘要:

以稻谷、米粒、米粉3种形态的样品,应用近红外光谱技术(NIRS)和偏最小二阶乘法(PLS),建立了6个稻米蛋白质含量近红外光谱数学模型,并对模型预测结果的准确性进行了评价。结果表明,糙米蛋白质含量的稻谷、糙米粒和糙米粉近红外光谱预测模型校正决定系数(RC2)分别为0.893、0.971和0.987,校正标准差(RMSEC)分别为0.507、0.259和0.183;精米蛋白质含量的稻谷、精米粒和精米粉近红外光谱预测模型RC2分别为0.897、0.984和0.986,RMSEC分别为0.497、0.186和0.190。模型内部交叉验证分析表明,预测糙米蛋白含量的稻谷、糙米粒和糙米粉模型内部交叉验证决定系数(RCV2)分别为0.865、0.962和0.984,内部验证标准差(RMSECV)分别为0.557、0.290和0.205;预测精米蛋白含量的稻谷、精米粒和精米粉的模型RCV2分别为0.845、0.951和0.979,RMSECV分别为0.594、0.316和0.233。模型外部验证分析表明,预测糙米蛋白含量的稻谷、糙米粒和糙米粉近红外光谱模型外部验证决定系数(RV2)分别为0.683、0.801和0.939,外部验证标准差(RMSEV)为0.962、0.799和0.434;预测精米蛋白含量的稻谷、精米粒和精米粉近红外光谱的模型RV2分别为0.673、0.921和0.959,RMSEV为0.976、0.513和0.344。用米粉建立的近红外光谱预模型准确性最高,米粒次之,基于稻谷的预测模型准确性相对较低;内部交叉验证和外部验证表明,近红外光谱分析技术与化学分析方法一致性较好,且能保证样品的完整性,在水稻优质育种和稻米品质分析中具有广泛的应用价值。

关键词: 水稻, 蛋白含量, 近红外光谱技术, 校正模型

Abstract:

Six predicted mathematic models for analysis of protein content in brown and milled rice were established, with the technique of near infrared reflectance spectroscopy (NIRS) and partial least square (PLS) algorithm. The protein content of brown rice and milled rice was determined by chemical methods. The different predicted models were established with the near infrared spectroscopy of paddy, whole grain and rice flour, which was to research the effect of sample forms on predicting veracity of NIR models. The determination coefficients (RC2) of calibration of NIR models of brown rice protein content for paddy, whole grain and flour were 0.893, 0.971 and 0.987 respectively, the root mean square errors of calibration (RMSEC) was 0.507, 0.259 and 0.183. The RC2 of NIR models of milled rice protein content for paddy, whole grain and flour were 0.897, 0.984 and 0.986,the RMSEC was 0.497, 0.186 and 0.190 respectively. The veracity of models was estimated by the determination coefficients (RCV2) and the root mean square errors (RMSECV) of cross-validation, the determination coefficients (RV2) and the root mean square errors (RMSEV) of external validation. The RCV2 of NIR models of brown rice protein content were 0.865, 0.962 and 0.984 respectively,the RMSECV 0.557, 0.290 and 0.205. The RCV2 of NIR models of milled rice protein content were 0.845, 0.951 and 0.979,the RMSECV 0.594, 0.316 and 0.233. The RV2 of the NIR models for brown rice protein content were 0.683, 0.801 and 0.939,the RMSEV 0.962, 0.799 and 0.434. The RV2 of the NIR models for milled rice protein content were 0.673, 0.921 and 0.959,the RMSEV 0.976, 0.513 and 0.344. From the above results, we concluded that the veracity of flour NIR models is the best, that of whole grain better, while that of paddy poor. The NIR method can substitute the chemical method and be widely used in the breeding and quality analysis of rice.

Key words: Rice, Protein content, Near infrared reflectance spectroscopy technique, Calibration model

中图分类号: 

  • S511
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!