欢迎访问作物学报,今天是

作物学报 ›› 2006, Vol. 32 ›› Issue (12): 1831-1835.

• 研究论文 • 上一篇    下一篇

水稻冠层结构的动态模拟研究

石春林1,2;朱艳1,*;曹卫星1;金之庆2   

  1. 1南京农业大学/江苏省信息农业高技术研究重点实验室,农业部作物生长调控重点开放实验室,江苏南京210095;2 江苏省农业科学院农业资源与环境研究中心,江苏南京210014
  • 收稿日期:2005-11-21 修回日期:1900-01-01 出版日期:2006-12-12 网络出版日期:2006-12-12
  • 通讯作者: 朱艳

Dynamic Simulation of Rice Canopy Structure

SHI Chun-Lin12,ZHU Yan1*,CAO Wei-Xing1,JIN Zhi-Qing2   

  1. 1 Hi-Tech Key Laboratory of Information Agriculture of Jiangsu Province, Key Laboratory of Crop Growth Regulation of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu; 2 Research Center of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
  • Received:2005-11-21 Revised:1900-01-01 Published:2006-12-12 Published online:2006-12-12
  • Contact: ZHU Yan

摘要:

根据水稻器官生长的生物学规律,在试验研究的基础上,结合生长模型相关输出,构建了普适性的水稻冠层拓扑结构模型。以节间及其着生叶或穗为单位,将水稻植株分解成若干生长单元,来描述水稻植株的冠层拓扑结构;利用Logistic曲线模拟器官伸长过程,并结合器官发育与叶龄关系,确定了各器官的初始伸长时间和伸长历期,构建了水稻植株冠层动态生长模型;最后对模型进行了检验,初步实现了以日为单位的虚拟水稻生长。

关键词: 水稻, 冠层, 结构, 伸长模型, 虚拟生长

Abstract:

Simulating crop growth visually on computer can help readers to better understand crop growth pattern and analyze the relationship between architecture and function. Some architecture models were developed to simulate development of crops in a given time interval, such as leaf age and growth unit. Most of them didn’t discuss the organ elongation processes and daily architecture change. So in order to realize more accurate and delicate crop growth, it is important to develop more applicable models to describe the dynamic change of crop architecture.
On the basis of rice biological laws and field experiments, combined with the output of rice growth model, a general organ elongation model and structural model for rice were developed. Firstly, growth unit, containing internode and its adjacent leaf or ear, was used to describe topological structure of rice plant. Then, with logistic curve for simulating organ elongation and according to the relationship of organ elongation and leaf age, that is, synchronous emerging among the nth leaf blade, the n-1th leaf sheath and the internode between n-2th and n-3th leaf, a dynamical structural model of rice plant was developed utilizing daily output of growth model and leaf age model. The model could give initial elongation GDD, elongation duration in degree days and curve parameters for each organ. So plant architecture could be simulated at any GDD with geometrical parameters of organs. The model was validated with the data from field experiments. The results showed that the model could well simulate plant architecture and organ elongation of rice with RMSE 0.284 cm, applicable to different varieties and environments. Finally using L-system to describe and simulate plant structure, morphological representation of rice plant and canopy at seedling, elongation and anthesis stages was realized.
Combined with the output of rice growth model, a general model was developed to simulate the daily architecture change in rice canopy. The model could offer more accurate and delicate rice growth visually.

Key words: Rice, Canopy, Structure, Elongation model, Virtual growth

中图分类号: 

  • S511
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!