欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (09): 1536-1542.

• 研究论文 • 上一篇    下一篇

灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位

赵秀琴1;朱苓华1;徐建龙1,*;黎志康1,2   

  1. 1中国农业科学院作物科学研究所/农作物基因资源与遗传改良国家重大科学工程,北京100081; 2International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
  • 收稿日期:2007-02-07 修回日期:1900-01-01 出版日期:2007-09-12 网络出版日期:2007-09-12
  • 通讯作者: 徐建龙

QTL Mapping of Yield under Irrigation and Rainfed Field Conditions for Advanced Backcrossing Introgression Lines in Rice

ZHAO Xiu-Qin1,ZHU Ling-Hua1,XU Jian-Long1*,LI Zhi-Kang12   

  1. 1 Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines

  • Received:2007-02-07 Revised:1900-01-01 Published:2007-09-12 Published online:2007-09-12
  • Contact: XU Jian-Long

摘要:

利用254个Lemont导入到特青背景的高代回交导入系定位了灌溉(对照)与自然降雨(干旱胁迫)环境下影响单株籽粒产量及其穗部相关性状的QTL。在两种环境下共检测到32个影响单株粒籽产量、千粒重和每穗实粒数的主效QTL,根据不同环境下表达的情况将其分成3类,第1类10个QTL,在两种环境下均被检测到;第2类14个QTL,只在对照条件下检测到;第3类8个QTL,受干旱胁迫诱导,只在胁迫条件下被检测到。此外还检测到9个影响胁迫与对照条件下性状差值的QTL。认为在两种条件下均检测到的相对稳定的3个QTL(QGn11bQGn12QGn11b)及影响两种条件下性状差值(即性状稳定性)的9个QTL可能对耐旱性有直接贡献。在所有12个耐旱QTL中,除在QGn5QGy1的Lemont等位基因减小性状差值(即增强耐旱性)外,其余位点上增强耐旱性的等位基因均来自特青。另外通过与源自相同亲本的不同定位群体在不同环境下定位结果的比较,鉴别出一些受遗传背景和环境影响较小的QTL如QGn3bQGw1QGw5QGy1QGy5QGy8QGy10。对应用QTL定位结果进行标记辅助选择培育耐旱品种进行了探讨。

关键词: 水稻, 耐旱性, 数量性状座位, 标记辅助选择

Abstract:

In rice breeding community, drought tolerance (DT) is becoming one of the most important target traits for variety improvement under ever-increasing severe drought situation all over the world. Yield is the most important target focused by breeders, so identification of favorable alleles related to yield and yield components for introgression into rice varieties that suit the specific environments is an efficient practice in plant MAS breeding. In the present study, the QTL conditioning the grain yield per plant (GY) and its component traits including 1000-grain weight (GW) and filled grain number per panicle (GN) in irrigation(control) and rainfed (drought stress) fields were investigated using 254 advanced backcrossing introgression lines (IL) of Lemont with Teqing genetic background and the two parents. Total of 32 main-effect QTLs for GY, GW, and GN were identified in the two conditions which can be grouped into three types based on their behaviors. TypeⅠincluded 10 QTLs which were detected both in the two conditions, type Ⅱ consisted of 14 QTLs which were mapped only in control condition, and type Ⅲ comprised 8 QTLs which were induced by drought and detected only under stress. In addition, nine QTLs affecting trait differences between stress and control were identified (QGn5, QGn6,QGn11a, QGw2, QGw8, QGw11a, QGw11b, QGy1, and QGy11). There were three QTLs (QGn11b, QGn12, and QGn11b) which expressed both in the two conditions with same direction and magnitude of gene effect. Therefore the three GN-QTLs and nine QTLs affecting trait differences were considered to directly contribute to drought tolerance (DT). Teqing alleles at the 12 DT-QTLs except QGn5 and QGy1 were associated with DT. As compared with the results from different mapping populations derived from the same parent, Lemont and Teqing, in different environments, seven QTLs including QGn3b, QGw1, QGw5, QGy1, QGy5, QGy8, and QGy10 which stably expressed across different genetic backgrounds and environments were identified. The strategy of applying QTL mapping results in rice improvement for DT by marker-assisted selection was discussed.

Key words: Rice, Drought tolerance, Quantitative trait locus, Marker-assisted selection

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!