欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (12): 2174-2179.doi: 10.3724/SP.J.1006.2009.02174

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆GmTINY1基因的克隆与表达分析

黄方,何慧,迟英俊,盖钧镒,喻德跃*   

  1. 南京农业大学国家大豆改良中心/作物遗传改良与种质创新重点实验室,江苏南京210095
  • 收稿日期:2009-04-23 修回日期:2009-07-21 出版日期:2009-12-10 网络出版日期:2009-09-07
  • 通讯作者: 喻德跃,E-mail:dyyu@njau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金(30771362和30800692),教育部高等学校博士学科点专项科研基金(200803071018),江苏省自然科学基金(BK2008334),南京农业大学青年创新基金(KJ08002)资助。

Cloning and Characterization of GmTINY1 Gene in Soybean(Glycine max

HUANG Fang,HE Hui,CHI Ying-Jun,GAI Jun-Yi,YU De-Yue*   

  1. National Center for Soybean Improvement/National Key Laboratory of Crop Genetics and Germplasm Enhancement,Nanjing Agricultural University,Nanjing 210095,China
  • Received:2009-04-23 Revised:2009-07-21 Published:2009-12-10 Published online:2009-09-07
  • Contact: YU Deng-Yue,E-mail:dyyu@njau.edu.cn

摘要:

采用基因芯片技术,从大豆中鉴定了一个荚优势表达基因。利用生物信息学的方法,拼接了该基因的全长序列,并通过RT-PCR克隆了该基因。Blast检索分析表明,该基因编码一个具有AP2结构域的转录因子,且与拟南芥DREB类蛋白TINY的氨基酸相似度最高,将该基因命名为GmTINY1GmTINY1包含一个735 bp的开放阅读框,编码244个氨基酸残基。GmTINY1与拟南芥TINYTINY2蛋白的相似度分别为59%62%。系统发生分析表明,GmTINY1TINYTINY2位于一个分支,且同属于DREB亚家族。实时定量RT-PCR检测表明,GmTINY1基因在荚中高丰度表达,在花中的表达量也较高,在根中的表达量较低,而在叶片中未检测到表达。基因芯片信息分析结果表明,GmTINY1在种子发育的子叶期的种脐部分高丰度表达。由此推论,GmTINY1基因在大豆生殖器官发育中可能发挥调控作用,可能与种子发育过程中种脐的形成有关。

关键词: 大豆, 转录因子, AP2, TINY, DREB

Abstract:

Plant reproductive development involves the coordination of a lot of genes encoding transcription factors.The AP2 domain transcription factors have been proved with critical roles in plant reproductive development.By microarray analysis, we identified a gene which showed higher expression in pod as 500 folds as that in leaf of soybean. The Blast searches indicated this gene encodes a dehydration responsive element binding protein (DREB)-like protein showing highest similarity to Arabidopsis TINY, therefore named as GmTINY1. By searching soybean genome and EST databases, the putative full-length cDNA sequence for GmTINY1 was in silico assembled. The GmTINY1 gene was cloned from soybean seeds at 15 DAF (days after flowering) by RT-PCR. GmTINY1 contained a complete open reading frame (ORF) of 755 bp which encoded a peptide of 244 amino acids. The predicted molecular mass and isoelctric point of GmTINY1 are 26.76 kD and 5.12, respectively. An AP2 domain and a ser-rich domain were identified in GmTINY1 amino acid sequence by Motif Scan server. The GmTINY1 encoding product showed 59% and 62% sequence similarities with Arabidopsis TINY and TINY2, respectively. Multiple sequences alignment revealed that a highly conserved AP2 domain was present in each AP2 domain transcription factor. In this AP2 domain, it was found that a Ser66 was specifically present in GmTINY1, DREB1B, TINY and TINY2 proteins but a Cys66 in DREB1A and DREB1C proteins, indicating, like Arabidopsis TINY, TINY2 and DREB1B, GmTINY1 might be able to bind both the dehydration responsive element(DRE) and ethylene responsive element (ERE) motifs while DREB1A and DREB1C only bind DRE motif. Besides, it was found that a ser-rich domain probably involving translational modification on GmTINY1 protein was located close to AP2 domain. The neighbor-joining phylogenetic tree showed that the AP2 domain transcription factors were grouped into four subfamilies: DREB, ERF, AP2, and RAV; and GmTINY1, TINY, and TINY2 were grouped into a branch which attributed to the DREB subfamily. With an attempt to understand the biological role for GmTINY1 and to verify the microarray result, we used the Real-time quantitative PCR approach to analyze the expression pattern of GmTINY1 in various soybean organs. We found that expression of GmTINY1 was highest in pod, relatively lower in flower and root but undetectable in leaf, indicating GmTINY1 may play some roles in soybean reproductive organs and root, but not in leaf. The Blast search results against soybean EST database also supported the specific expression of GmTINY1 in soybean pod and root. We analyzed GmTINY1 expression during the course of seed development based on publicly available microarray data and found that GmTINY1 was expressed with a low level at the globular stage and heart stage but highly expressed in hilum at the cotyledon stage embryos. Taken together, it is suggested that GmTINY1 may play some regulatory role in soybean reproductive development, such as the formation of hilum in soybean.

Key words: Soybean, Transcription factory, AP2, TINY, DREB

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[9] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[12] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[13] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[14] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[15] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!