欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (2): 301-308.doi: 10.3724/SP.J.1006.2009.00301

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

碱胁迫下粳稻幼苗前期耐碱性的数量性状基因座检测

祁栋灵1,2;郭桂珍3;李明哲4;杨春刚3;张俊国3;曹桂兰1;张三元3   

  1. 1中国农业科学院作物科学研究所/国家农作物基因资源与基因改良重大科学工程/农业部作物种持资源与生物技术重点开放实验室,北京100081;2中国热带农业科学院橡胶研究所/农业部热带作物栽培生理学重点开放实验室,海南儋州571737;3吉林省农业科学院水稻研究所,吉林公主岭136100;4韩国农村振兴厅农业生命工学研究院,韩国水原441-707;5四川农业大学园艺系,四川雅安625014
  • 收稿日期:2008-08-15 修回日期:2008-10-05 出版日期:2009-02-12 网络出版日期:2008-12-11
  • 通讯作者: 韩龙植
  • 基金资助:

    本研究由国家科技支撑计划项目(2006BAD13B01),国家重点基础研究发展计划(973计划)项目(2004CB117201),中韩合作项目(2006-2009)资助。

Identification of Quantitative Trait Loci for Alkaline Tolerance at Early Seedling Stage under Alkaline Stress in Japonica Rice

QI Dong-Ling1,2,GUO Gui-Zhen3,LEE Myung-Chul4,YANG Chun-Gang3,ZHANG Jun-Guo3,CAO Gui-Lan1,ZHANG San-Yuan3,SUH Seok-Cheol4,ZHOU Qing-Yang5,HAN Long-Zhi1,*   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/The National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Resources and Biotechnology, Ministry of Agriculture, Beijing 100081,China;2rubber Research Institute of China, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Physiology for Tropical Crops, Ministry of Agriculture, Danzhou 571737,China;3Institute of Rice Research,Jilin Academy of Agricultural Sciences, Gongzhuling 136100,China;4 National Institute of Agricultural biotechnology, Rural Development Administration, Suwon 441-707,Korea;5 Horticultural Department, Sichuan Agricultural University,Ya'an 625014,China
  • Received:2008-08-15 Revised:2008-10-05 Published:2009-02-12 Published online:2008-12-11
  • Contact: HAN Long-Zhi

摘要:

以粳粳交高产106/长白9”F2:3200个家系为作图群体, 0.15% Na2CO3溶液的碱性胁迫下, 进行了水稻耐碱性鉴定, 并以SSR标记构建的分子连锁图谱为基础, 对水稻幼苗前期的根数、根长和苗高及其相对碱害率进行了数量性状基因座(QTLs)的检测。结果表明, 上述性状在F3家系群中均表现为具有1~2个峰的连续分布, 认为由主效基因和微效基因共同控制的数量性状。共检测到与碱胁迫下幼苗前期根数、根长和苗高及其相对碱害率相关的QTL 26, 分布于第15678911染色体上。其中, 碱胁迫下与根数相关的QTL 4, qRN6-1qRN11对表型变异的解释率较大, 分别为29.91%13.42%;与根数相对碱害率相关的QTL 5, qRRN11-2对表型变异的解释率较大, 23.86%;与根长相关的QTL 6, qRRL11-2对表型变异的解释率较大, 21.06%;与根长相对碱害率相关的QTL 2, 但对表型变异的解释率均较低;与苗高相关的QTL 5, qSH1qSH11-2对表型变异的解释率较大, 分别为15.81%16.53%;与苗高相对碱害率相关的QTL 4, qRSH5qRSH6-2对表型变异的解释率分别为29.89%34.63%。而这些解释率较大的QTL所处的标记区间距离, qRN6-1相对较小(19.0 cM), 其余QTL的标记区间距离均大于26.3 cM, 需作进一步的精细定位。在所检测到的QTL, 13QTL的增效等位基因均来自耐碱亲本长白9, 而其余QTL的增效等位基因来自敏碱亲本高产106;基因的主要作用方式为超显性或部分显性。

关键词: 水稻, 幼苗前期, 耐碱性, 微卫星标记, 数量性状基因座

Abstract:

The quantitative trait loci (QTLs) for root number, root length, seedling height and their relative alkaline damage rates at early seedling stage in rice under 0.15% Na2CO3 alkaline stress were identified using a F2:3 population, which included 200 individuals and lines derived from a cross between two japonica rice cultivars Gaochan 106 and Changbai 9 with microsatellite markers. All the traits above showed a continuous distribution with 1 or 2 peaks in F3 lines under alkaline stress, which were the quantitative traits controlled by major and multiple QTLs. Twenty-six QTLs associated with root number, root length and seedling height and their relative alkaline damage rates at early seedling stage under alkaline stress were detected, and which were located on chromosomes 1, 5, 6, 7, 8, 9, and 11. These QTLs included 4 QTLs associated with root number, 5 QTLs correlated with relative alkaline damage rate for root number, 6 QTLs controlling root length, 2 QTLs for relative alkaline damage rate for root length, 5 QTLs associated with seedling height, 4 QTLs related to relative alkaline damage rate for seedling height. qRN6-1, qRN11, qRRN11-2, qRRL11-2, qSH1, qSH11-2, qRSH5, and qRSH6-2, accouonted for 29.91, 13.42, 23.86, 21.06, 15.81, 16.53, 29.89, and 34.63% of the observed phenotypic variation, respectively. While the marker flanking distance of these QTLs explained larger. The observed phenotypic variation were more than 26.3 cM, except qRN6-1 with 19.0 cM of marker flanking distance, which should be conducted more refined mapping further. Of detected QTLs, the alleles for 13 QTLs originated from the tolerant parent Changbai 9, and the alleles of other QTLs were derived from alkaline sensitive parent Gaochan 106. These gene actions showed mainly part dominance or over dominant effects.

Key words: Rice, Alkaline tolerance, Early seedling stage, Microsatellite marker, Quantitative trait locus(QTL)

[1]Malcolm E S, Ravendra N, eds. Sodic Soils: Distribution, Proper-ties, Management, and Environmental Consequences. New York, Oxford: Oxford University Press, 1998. pp 19-34
[2]Zhu J K. Plant salt tolerance. Trends Plant Sci, 2001, 6: 66-71
[3]Niu D-L(牛东玲), Wang Q-J(王启基). Research progress on salt-alkaline field control. Chin J Soil Sci (土壤通报), 2002, 33(2): 449-455 (in Chinese with English abstract)
[4]Wang Z-L(汪宗立), Liu X-Z(刘晓忠), Wang Z-X(王志霞). Study on the physiology of rice salt tolerance: (I) The difference of rice varieties between water and pervasion regulation at salt stress. J Jiangsu Agric (江苏农业学报), 1986, 2(3): 1-10 (in Chinese)
[5]Zhang G Y, Guo Y, Chen S L, Chen S Y. RFLP tagging of a salt tolerance gene in rice. Plant Sci, 1995, 110: 227-234
[6]Xie G-S(谢国生), Liu S-K(柳蔘奎), Takano T(高野哲夫), Zhang D-P(张端品). Effects of salt and alkali stress on differen-tial expression genes in rice seedlings. Chin J Appl Environ Biol (应用与环境生物学报), 2005, 11(2): 129-133
[7]Flower T J. Improving crop salt tolerance. J Exp Bot, 2004, 55: 307-319
[8]Qi D L, Guo G Z, Lee M C, Zhang J G, Cao G L, Zhang S Y, Suh S C, Zhou Q Y, Han L Z. Identification of quantitative trait loci for the dead leaf rate and the seedling dead rate under alka-line stress in rice. J Genet Genomics, 2008, 35: 299-305
[9]Yang Z-F(杨兆凤). New japonica variety Changbai 9. Crop Germplasm (作物品种资源), 1997, (1): 51-52 (in Chinese)
[10]Zou Y-P(邹喻苹), Ge S(葛颂), Wang X-D(王晓东). Molecular Marker in System and Evolution Botany (系统与进化植物学中的分子标记). Beijing: Science Press, 2001. pp 7-18 (in Chinese)
[11]Liu R-H(刘仁虎), Meng J-L(孟金陵). MapDraw: A microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (遗传), 2003, 25(3): 317-321 (in Chinese with English abstract)
[12]MaCouch S R, Cho Y G, Yang M, Paul E, Blinstrub M, Mori- shima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13
[13]Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to beterosis in a hy-brid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823-839
[14]Akbar M, Yabuno T. Breeding saline-resistant varieties of rice: IV. Inheritance of delayed type panicle sterility induced by salinity. Jpn J Breed, 1977, 27: 237-240
[15]Khatun S, Flower T J. Effects of salinity on seed set in rice. Plant Cell Environ, 1995, 18: 61-67
[16]Zhao K-F(赵可夫). The plant adaptation to salt stress. Biol Bull (生物学通报), 2002, 37(6): 7-10 (in Chinese)
[17]Akbar M, Yabuno T, Nakao S. Breeding for saline-resistant varie-ties of rice: I. Variability for salt tolerance among some rice va-rieties. Jpn J Breed, 1972, 22: 278-284
[18]Akbar M, Khush G S, Hille R L D. Genetics of salt tolerance in rice. In: Proceedings of the Rice Genetics Smposium. Manila, Philip-pines: International Rice Research Institute. 1985. pp 399-409
[19]Moeljopawiro S, Ikehashi H. Inheritance of salt tolerance in rice. Euphytica, 1981, 30: 291-230
[20]Jones M P. Genetic analysis of salt tolerance in mangrove swamp rice. In: Rice Genetics Proceeding of International Rice Genetics Symposium. Manila, Philippines: International Rice Research In-stitute, 1985. pp 41-122
[21]Qi Z-B(祁祖白), Li B-J(李宝健), Yang W-G(杨文广), Cai Y-T(蔡业统). Primary study on salt tolerance in rice. Guangdong Agric Sci (广东农业科学), 1991, (1): 18-21 (in Chinese)
[22]He D-Y(贺道耀), Yu S-W(余叔文). Primary study on salt toler-ance in rice. Acta Phytophysiol Sin (植物生理学报), 1997, 23(4): 357-362 (in Chinese with English abstract)
[23]Gu X-Y(顾兴友), Zheng S-L(郑少玲), Yan X-L(严小龙), Lu Y-G(卢永根). Analysis of generation means for the inheritance of salt tolerance in rice seedlings. Acta Agron Sin (作物学报), 1999, 25(6): 687-690 (in Chinese with English abstract)
[24]Gu X-Y(顾兴友), Mei M-T(梅曼彤), Yan X-L(严小龙). Pre-liminary detection of quantitative trait loci for tolerance in rice. Chin J Rice Sci (中国水稻科学), 2000, 14(2): 65-70 (in Chinese with English abstract)
[25]Lin H X, Zhu M Z, Yano M, Gao J P, Liang Z W, Su W A, Hu X H, Ren Z H. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet, 2004, 108: 253-260
[26]Yang Q-L(杨庆利), Wang J-F(王建飞), Ding J-J(丁俊杰), Zhang H-S(张红生). Inheritance of salt tolerance in some rice (Oryza sativa L.) cultivars at the seedling stage. J Nanjing Agric Univ (南京农业大学学报), 2004, 27(4): 6-10 (in Chinese with Eng-lish abstract)
[27]Cheng H-T(程海涛), Jiang H(姜华), Yan M-X(颜美仙), Dong G-J (董国军), Qian Q(钱前), Guo L-B(郭龙彪). QTL-mapping comparison of tolerance to alkali at the germination period and early seedling stage between two different double haploid popu-lation in rice. Mol Plant Breed (分子植物育种), 2008, 6(3): 439-450 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!