作物学报 ›› 2009, Vol. 35 ›› Issue (2): 301-308.doi: 10.3724/SP.J.1006.2009.00301
祁栋灵1,2;郭桂珍3;李明哲4;杨春刚3;张俊国3;曹桂兰1;张三元3
QI Dong-Ling1,2,GUO Gui-Zhen3,LEE Myung-Chul4,YANG Chun-Gang3,ZHANG Jun-Guo3,CAO Gui-Lan1,ZHANG San-Yuan3,SUH Seok-Cheol4,ZHOU Qing-Yang5,HAN Long-Zhi1,*
摘要:
以粳粳交“高产106/长白9号”F2:3代200个家系为作图群体, 在0.15% Na2CO3溶液的碱性胁迫下, 进行了水稻耐碱性鉴定, 并以SSR标记构建的分子连锁图谱为基础, 对水稻幼苗前期的根数、根长和苗高及其相对碱害率进行了数量性状基因座(QTLs)的检测。结果表明, 上述性状在F3家系群中均表现为具有1~2个峰的连续分布, 认为由主效基因和微效基因共同控制的数量性状。共检测到与碱胁迫下幼苗前期根数、根长和苗高及其相对碱害率相关的QTL 26个, 分布于第1、5、6、7、8、9和11染色体上。其中, 碱胁迫下与根数相关的QTL 4个, qRN6-1和qRN11对表型变异的解释率较大, 分别为29.91%和13.42%;与根数相对碱害率相关的QTL 5个, qRRN11-2对表型变异的解释率较大, 为23.86%;与根长相关的QTL 6个, qRRL11-2对表型变异的解释率较大, 为21.06%;与根长相对碱害率相关的QTL 2个, 但对表型变异的解释率均较低;与苗高相关的QTL 5个, qSH1和qSH11-2对表型变异的解释率较大, 分别为15.81%和16.53%;与苗高相对碱害率相关的QTL 4个, qRSH5和qRSH6-2对表型变异的解释率分别为29.89%和34.63%。而这些解释率较大的QTL所处的标记区间距离, 除qRN6-1相对较小(19.0 cM)外, 其余QTL的标记区间距离均大于26.3 cM, 需作进一步的精细定位。在所检测到的QTL中, 13个QTL的增效等位基因均来自耐碱亲本长白9号, 而其余QTL的增效等位基因来自敏碱亲本高产106;基因的主要作用方式为超显性或部分显性。
[1]Malcolm E S, Ravendra N, eds. Sodic Soils: Distribution, Proper-ties, Management, and Environmental Consequences. New York, Oxford: Oxford University Press, 1998. pp 19-34 [2]Zhu J K. Plant salt tolerance. Trends Plant Sci, 2001, 6: 66-71 [3]Niu D-L(牛东玲), Wang Q-J(王启基). Research progress on salt-alkaline field control. Chin J Soil Sci (土壤通报), 2002, 33(2): 449-455 (in Chinese with English abstract) [4]Wang Z-L(汪宗立), Liu X-Z(刘晓忠), Wang Z-X(王志霞). Study on the physiology of rice salt tolerance: (I) The difference of rice varieties between water and pervasion regulation at salt stress. J Jiangsu Agric (江苏农业学报), 1986, 2(3): 1-10 (in Chinese) [5]Zhang G Y, Guo Y, Chen S L, Chen S Y. RFLP tagging of a salt tolerance gene in rice. Plant Sci, 1995, 110: 227-234 [6]Xie G-S(谢国生), Liu S-K(柳蔘奎), Takano T(高野哲夫), Zhang D-P(张端品). Effects of salt and alkali stress on differen-tial expression genes in rice seedlings. Chin J Appl Environ Biol (应用与环境生物学报), 2005, 11(2): 129-133 [7]Flower T J. Improving crop salt tolerance. J Exp Bot, 2004, 55: 307-319 [8]Qi D L, Guo G Z, Lee M C, Zhang J G, Cao G L, Zhang S Y, Suh S C, Zhou Q Y, Han L Z. Identification of quantitative trait loci for the dead leaf rate and the seedling dead rate under alka-line stress in rice. J Genet Genomics, 2008, 35: 299-305 [9]Yang Z-F(杨兆凤). New japonica variety Changbai 9. Crop Germplasm (作物品种资源), 1997, (1): 51-52 (in Chinese) [10]Zou Y-P(邹喻苹), Ge S(葛颂), Wang X-D(王晓东). Molecular Marker in System and Evolution Botany (系统与进化植物学中的分子标记). Beijing: Science Press, 2001. pp 7-18 (in Chinese) [11]Liu R-H(刘仁虎), Meng J-L(孟金陵). MapDraw: A microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (遗传), 2003, 25(3): 317-321 (in Chinese with English abstract) [12]MaCouch S R, Cho Y G, Yang M, Paul E, Blinstrub M, Mori- shima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13 [13]Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to beterosis in a hy-brid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823-839 [14]Akbar M, Yabuno T. Breeding saline-resistant varieties of rice: IV. Inheritance of delayed type panicle sterility induced by salinity. Jpn J Breed, 1977, 27: 237-240 [15]Khatun S, Flower T J. Effects of salinity on seed set in rice. Plant Cell Environ, 1995, 18: 61-67 [16]Zhao K-F(赵可夫). The plant adaptation to salt stress. Biol Bull (生物学通报), 2002, 37(6): 7-10 (in Chinese) [17]Akbar M, Yabuno T, Nakao S. Breeding for saline-resistant varie-ties of rice: I. Variability for salt tolerance among some rice va-rieties. Jpn J Breed, 1972, 22: 278-284 [18]Akbar M, Khush G S, Hille R L D. Genetics of salt tolerance in rice. In: Proceedings of the Rice Genetics Smposium. Manila, Philip-pines: International Rice Research Institute. 1985. pp 399-409 [19]Moeljopawiro S, Ikehashi H. Inheritance of salt tolerance in rice. Euphytica, 1981, 30: 291-230 [20]Jones M P. Genetic analysis of salt tolerance in mangrove swamp rice. In: Rice Genetics Proceeding of International Rice Genetics Symposium. Manila, Philippines: International Rice Research In-stitute, 1985. pp 41-122 [21]Qi Z-B(祁祖白), Li B-J(李宝健), Yang W-G(杨文广), Cai Y-T(蔡业统). Primary study on salt tolerance in rice. Guangdong Agric Sci (广东农业科学), 1991, (1): 18-21 (in Chinese) [22]He D-Y(贺道耀), Yu S-W(余叔文). Primary study on salt toler-ance in rice. Acta Phytophysiol Sin (植物生理学报), 1997, 23(4): 357-362 (in Chinese with English abstract) [23]Gu X-Y(顾兴友), Zheng S-L(郑少玲), Yan X-L(严小龙), Lu Y-G(卢永根). Analysis of generation means for the inheritance of salt tolerance in rice seedlings. Acta Agron Sin (作物学报), 1999, 25(6): 687-690 (in Chinese with English abstract) [24]Gu X-Y(顾兴友), Mei M-T(梅曼彤), Yan X-L(严小龙). Pre-liminary detection of quantitative trait loci for tolerance in rice. Chin J Rice Sci (中国水稻科学), 2000, 14(2): 65-70 (in Chinese with English abstract) [25]Lin H X, Zhu M Z, Yano M, Gao J P, Liang Z W, Su W A, Hu X H, Ren Z H. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet, 2004, 108: 253-260 [26]Yang Q-L(杨庆利), Wang J-F(王建飞), Ding J-J(丁俊杰), Zhang H-S(张红生). Inheritance of salt tolerance in some rice (Oryza sativa L.) cultivars at the seedling stage. J Nanjing Agric Univ (南京农业大学学报), 2004, 27(4): 6-10 (in Chinese with Eng-lish abstract) [27]Cheng H-T(程海涛), Jiang H(姜华), Yan M-X(颜美仙), Dong G-J (董国军), Qian Q(钱前), Guo L-B(郭龙彪). QTL-mapping comparison of tolerance to alkali at the germination period and early seedling stage between two different double haploid popu-lation in rice. Mol Plant Breed (分子植物育种), 2008, 6(3): 439-450 (in Chinese with English abstract) |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|