欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (4): 580-587.doi: 10.3724/SP.J.1006.2009.00580

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻染色体片段代换系对氮、磷胁迫反应差异及其QTL分析

王雨,孙永建,陈灯银,余四斌*   

  1. 华中农业大学作物遗传改良国家重点实验室/国家植物基因研究中心(武汉),湖北武汉430070
  • 收稿日期:2008-08-11 修回日期:2008-12-13 出版日期:2009-04-12 网络出版日期:2009-02-13
  • 通讯作者: 余四斌,E-mail:ysb@mail.hzau.edu.cn;Tel:027-87281803
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA10Z151),引进国际先进农业科学技术计划项目(2006-G1)资助。

Quantitative Trait Loci Analysis of Responses to Nitrogen and Phosphorus Deficiency in Rice Chromosomal Segment Substitution Lines

WANG Yu,SUN Yong-Jian,CHEN Deng-Ying,YU Si-Bin*   

  1. National Key Laboratory of Crop Genetic Improvement and National Plant Gene Research Centre (Wuhan),Huazhong Agricultural University,Wuhan 430070,China
  • Received:2008-08-11 Revised:2008-12-13 Published:2009-04-12 Published online:2009-02-13
  • Contact: YU Si-Bin,E-mail:ysb@mail.hzau.edu.cn;Tel:027-87281803

摘要:

利用来源于9311(籼稻)与日本晴(粳稻)杂交后代衍生的遗传背景为9311的染色体片段代换系群体,分析其在大田正常、低氮和低磷条件下的单株有效穗和单株产量的差异。结果表明,低磷、低氮胁迫对单株有效穗和单株产量影响较大。代换系磷和反应存在明显差异。在低氮()水平下共检测到26个单株有效穗和单株产量片段或QTL,以及12个相对单株有效穗和相对单株产量QTL。源于日本晴的等位基因均呈减效作用。低磷和低氮下共同检测到5个导入片段影响单株有效穗或单株产量。而大部分(81%)QTL只在单胁迫处理下被检测到。表明水稻对磷胁迫和氮胁迫的反应既存在不同的遗传基础,也存在共同的遗传机制。

关键词: 水稻, 耐低氮, 耐低磷, 染色体片段代换系, 数量性状位点(QTL)

Abstract:

Tolerance to low nitrogen and low phosphorus conditions is a highly desired characteristic for sustainable crop production. In this study, a set of 125 chromosome segment substitution lines (CSSL), each containing a single or few introgression segments from a japonica cv. Nipponbare with the genetic background of an indica cv. 9311, were evaluated using augmented design under the field experiment with normal, low nitrogen (N0), and low phosphorus (P0) conditions. The grain yield and panicle number per plant were measured for each CSSL, and their relative values based on N0 or P0 and normal conditions were considered as the measurement for tolerance to low soil nutrient. The results showed that both the N0 and P0 conditions had strong negative effect on yield and panicle number, and there were different responses among the CSSLs to the stresses, and the relative traits had a significant negative correlation with the traits under the normal condition. 9311 showed better tolerance to low nutrient conditions than Nipponbare. A total of 38 chromosomal regions or quantitative trait loci (QTLs) all with negative allelic effects from Nipponbare were detected for the measured traits under the nitrogen and the phosphorus stresses, of those 26 QTLs were for the yield and panicle number, 12 QTLs for the relative traits. Five chromosomal regions were identified in common under both the stresses, while most QTLs (81%) were specifically detected only in low nitrogen or phosphorus condition. Such different QTLs suggest that the responses to limiting nitrogen and phosphorus conditions are regulated by different sets of genes in rice. Most QTLs for the relative traits were co-localized with those for the yield and the panicle number under either nitrogen or phosphorus stresses, indicating that the tolerance QTLs may be involved in nitrogen and phosphorus uptake or assimilation pathway in rice.

Key words: Oryza sativa L., Low nitrogen and phosphorus tolerance, Chromosomal segment substitution lines(CSSLs), Quantitative trait locus(QTL)

[1]Li Q-K(李庆逵), Zhu Z-L(朱兆良), Yu T-R(于天仁). The Fertilizer Problems for Sustainable Development of Agriculture in China (中国农业持续发展中的肥料问题). Nanchang: Jiangxi Science and Technology Press, l997. pp 38–51 (in Chinese)
[2]Zhang Q. Strategies for developing Green Super Rice. Proc Natl Acad Sci USA, 2007, 104: 16402–16409
[3]Hirel B, Bertin P, Quillere I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol, 2001, 125:1258–1270
[4]Loudet O, Chaillou S, Merigout P, Talbotec J, Daniel-Vedele F. Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis. Plant Physiol, 2003, 131: 345–358
[5]Liang Q(梁泉), Liao H(廖红), Mei M-T(梅曼彤), Cheng X-H(程小会), Yan X-L(严小龙). Research progress in QTL analysis of traits related to phosphorus efficiency in crops. Mol Plant Breed (分子植物育种), 2006, 4(4):453–463 (in Chinese with English abstract)
[6]Ni J, Wu P, Senadhira D, Huang N. Mapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.). Theor Appl Genet, 1998, 97:1361–1369
[7]Wissuwa M, Wegner J, Ae N, Yano M. Substitution mapping of Pup1: A major QTL increasing phosphorus uptake of rice from a phosphorus-deficient soil. Theor Appl Genet, 2002, 105: 890–897
[8]Tong H H, Mei H W, Yu X Q, Xu X Y, Li M S, Zhang S Q, Luo L J. Identification of related QTL at late developmental stage in rice (Oryza sativa L.) under two nitrogen levels. Acta Genet Sin, 2006, 33: 458–467
[9]Mu P(穆平), Huang C(黄超), Li J-X(李君霞), Liu L-F(刘立峰), Li Z-C(李自超). Yield trait variation and QTL mapping in a DH population of rice under phosphorus deficiency. Acta Agron Sin (作物学报), 2008, 34(7): 1137–1142 (in Chinese with English abstract)
[10]Yamaya T, Obara M, Nakajima H, Sasaki S, Hayakawa T, Sato T. Genetic manipulation and quantitative trait loci mapping for nitrogen recycling in rice. J Exp Bot, 2002, 53: 917–925
[11]Lian X, Xing Y, Yan H, Xu C, Zhang Q. QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet, 2005, 112: 85–96
[12]Ashikari M, Matsuoka M. Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci, 2006, 11: 344–350
[13]Zamir D. Improving plant breeding with exotic genetic libraries. Nat Rev Genet, 2001, 2: 983–989
[14]Xu H-S(徐华山), Sun Y-J(孙永建), Zhou H-J(周红菊), Yu S-B(余四斌). Development and characterization of contiguous segment substitution lines with background of elite restorer line. Acta Agron Sin (作物学报), 2007, 33(6): 979–986 (in Chinese with English abstract)
[15]Yang D(杨德). Design and Analysis of Experiments (试验设计与分析).Beijing: China Agriculture Press,2002. pp 357–360 (in Chinese)
[16]StatSoft. Statistica. StatSoft Incorporated, Tusla, Oklahoma, 1997
[17]Young N D, Tanksley S D. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet, 1989, 77: 95–101
[18]Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147–1162
[19]Piao Z-Z(朴钟泽), Han L-Z(韩龙植), Koh L-J (高熙宗), Lu J-A(陆家安), Zhang J-M(张建明). Selection effect of nitrogen use efficiency in rice. Acta Agron Sin (作物学报), 2004, 30(7): 651–656 (in Chinese with English abstract)
[20]Li F(李锋), Pan X-H(潘晓华), Liu S-Y(刘水英), Li M-Y(李木英), Yang F-S(杨福孙). Effect of phosphorus deficiency stress on root morphology and nutrient absorption of rice cultivars. Acta Agron Sin (作物学报), 2004, 30(5): 438–442 (in Chinese with English abstract)
[21]Zeng J-M (曾建敏), Cui K-H(崔克辉), Huang J-L(黄见良), He F(贺帆), Peng S-B(彭少兵). Responses of physio-biochemical properties to N-fertilizer application and its relationship with nitrogen use efficiency in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2007, 33 (7):1168–1176 (in Chinese with English abstract)
[22]Geloff G C. Intact-plant screening for tolerance of nutrient deficiency stress. Plant Soil, 1987, 99: 3–16
[23]Cheng J-F(程建峰), Dai T-B(戴廷波), Cao W-X(曹卫星), Jiang D(姜东). Classification, identification and evaluation of nitrogen nutrition efficiencies in rice germplasms at seedling stage. Acta Agron Sin (作物学报), 2005, 31(12):1640–1647(in Chinese with English abstract)
[24]Hang N-R(黄农荣), Zhong X-H(钟旭华), Zheng H-B(郑海波). Selection of rice genotypes with high nitrogen utilization efficiency and its evaluation indices. Chin Agric Sci Bul (中国农学通报), 2006, 22(6): 29–34 (in Chinese with English abstract)
[25]Liu Y(刘亚), Li Z-C(李自超), Mi G-H(米国华), Zhang H-L(张洪亮), Mu P(穆平), Wang X-K(王象坤). Screening and identification for tolerance to low-phosphorus stress of rice germplasm (Oryza sativa L.). Acta Agron Sin (作物学报), 2005, 31(2): 238–242 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!