欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (4): 704-710.doi: 10.3724/SP.J.1006.2009.00704

• 耕作栽培·生理生化 • 上一篇    下一篇

钾对不同类型水稻氮素吸收利用的影响

王强盛1,甄若宏2,丁艳锋1,朱艳1,王绍华1,曹卫星1*   

  1. 1南京农业大学农学院,江苏南京210095;2江苏省农业科学院,江苏南京210014
  • 收稿日期:2008-10-06 修回日期:2008-10-15 出版日期:2009-04-12 网络出版日期:2009-02-16
  • 通讯作者: 曹卫星 E-mail:caow@njau.edu.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA10Z219和2006AA10A303),国家科技支撑计划项目(2004BA520A03和2006BAD02A03),江苏省科技攻关计划项目(BE2004387)资助。

Effect of Potassium Application Rates on Nitrogen Absorption and Utilization of Different Types of Rice

WANG Qiang-Sheng1,ZHEN Ruo-Hong2,DING Yan-Feng1,ZHU Yan1,WANG Shao-Hua1,CAO Wei-Xing1*   

  1. 1College of Agronomy,Nanjing Zgricultural University,Nanjing 210095,China;2Jiangsu Academy of Agricultural Sciences,Nanjing 210014,China
  • Received:2008-10-06 Revised:2008-10-15 Published:2009-04-12 Published online:2009-02-16
  • Contact: CAO Wei-Xing E-mail:caow@njau.edu.cn

摘要:

以常规粳稻武运粳7号、武香粳14和杂交粳稻868号、泗优422为材料,研究了钾对水稻氮素吸收、分配和利用的影响。结果表明,钾对水稻有明显增产效应,增产率4.56%~14.77%;钾提高了水稻不同生育阶段植株吸氮量,以拔节期到抽穗期氮素积累增量最大,但吸氮比例下降;钾促进了抽穗后氮素转运量和转运率,提高了氮素在不同器官分配量及叶片、穗分配比例,但降低了茎鞘分配比例;钾增强了植株对肥料氮吸收,基肥氮素利用率、全生育期氮素利用率和氮素收获指数显著增长,但降低了植株氮生产效率;以180 kg hm-2K2O处理产量最高,氮素积累量、转运量和转运率以及不同器官分配量最大,基肥氮素利用效率、植株对肥料氮吸收量和全生育期氮素利用率最大,但拔节期到抽穗期氮素吸收比例、茎鞘氮素分配比例和植株氮生产效率最低;常规粳稻产量高于杂交粳稻,其氮素利用率相对较大。

关键词: 水稻, 施钾量, 氮素吸收, 氮素利用率

Abstract:

Potassium, nitrogen and their interaction play important roles in plant growth, development and yield of rice. Appropriate potassium can stimulate nitrogen accumulation and translocation in rice. In order to identify plant nitrogen absorption, distribution and utilization characteristics of rice under potassium supply, a field experiment was conducted with four potassium rates (0, 90, 180, 270 kg ha-1K2O) using conventional japonica cultivars (Wuyunjing 7 and Wuxiangjing 14) and hybrid japonica cultivars (86 you 8, Siyou 422) from 2004 to 2005 on Experimental Farm of Nanjing Agricultural University, Jiangsu province, China. Potassium application increased rice yield (4.56-14.77%) and nitrogen accumulation during growth stages, with the maximum from elongation stage to heading stage, but nitrogen uptake ratio decreased. Potassium application enhanced nitrogen transport amount and percentage after anthesis, as well as nitrogen accumulation in different rice organs, nitrogen distribution percentage in leaves and panicles, whereas declined nitrogen distribution percentage in culm and sheath. Nitrogen absorption from fertilizer, basic nitrogen recovery efficiency before elongation stage, nitrogen recovery efficiency during the whole growing stage, and nitrogen harvest index were raised significantly, but plant nitrogen productivity was opposite. Grain yield, nitrogen accumulation, nitrogen translocation amount and percentage after anthesis, and nitrogen distribution in different rice organs amounted to the maximum at K2O application rate of 180 kg ha-1, as well as nitrogen absorption from fertilizer, basic nitrogen recovery efficiency before elongation stage, nitrogen recovery efficiency during the whole growing stage. However, nitrogen absorption percentage from elongation stage to heading stage, nitrogen distribution percentage in culm and sheath, plant nitrogen productivity decreased to the minimum. The yield and nitrogen recovery efficiency of conventional japonica cultivars were higher than those of hybrid japonica cultivars.

Key words: Rice, Potassium application rates, Nitrogen absorption, Nitrogen use efficiency

[1]Wang Q-S(王强盛), Zhen R-H(甄若宏), Ding Y-F(丁艳锋), Ji Z-J(吉志军), Cao W-X(曹卫星), Huang P-S(黄丕生). Effects of potassium fertilizer application rates on plant potassium accumulation and grain quality of japonica rice. Sci Agric Sin (中国农业科学), 2004, 37(10): 1444–1450 (in Chinese with English abstract)
[2]Zu Y-C(祖艳群), Lin K-H(林克惠). Interaction between N and K nutrient and its effect on crops yield and quality. Soil Fert (土壤肥料), 2000, (2): 3–7 (in Chinese)
[3]Li H(李华), Yang X-E(杨肖娥), Luo A-C(罗安程). Effects of nitrogen sources and potassium levels on growth and nutrient content of hybrid, its parent and conventional rice. Plant Nutr Fert Sci (植物营养与肥料学报), 2001, 7(3): 278–284 (in Chinese with English abstract)
[4]Li H(李华), Yang X-E(杨肖娥), Luo A-C(罗安程). Genotypic difference in N and K accumulation under different N sources and K levels in rice. Chin J Rice Sci (中国水稻科学), 2002, 16(1): 86–88(in Chinese with English abstract)
[5]Wang Z-Y(王正银), Yao J-X(姚建祥). Effect of nitrogen supplying levels on uptake and utilization of purple soil potassium by various rice varieties. Plant Nutr Fert Sci (植物营养与肥料学报), 1998, 4(2): 183–187(in Chinese with English abstract)
[6]Luo A-C(罗安程), Yang X-E(杨肖娥). Relationship between N and K supply and NO3-and NH4+ absorption by rice in late stage. Sci Agric Sin (中国农业科学), 1998, 31(3): 1–4 (in Chinese with English abstract)
[7]Hu H(胡泓), Wang G-H(王光火). Nature of nitrogen and phosphorus uptake by a hybrid rice under the potassium fertilizer treatment. Chin J Soil Sci (土壤通报), 2003, 34(3): 202–204 (in Chinese with English abstract)
[8]Dai P-A(戴平安), Li M-D(李明德), Zheng S-X(郑圣先). Effect of K, N and their interaction on rice yield and nutrient absorption. Chin J Soil Sci (土壤通报), 1992, 23(4): 162–164 (in Chinese)
[9]Bao S-D(鲍士旦). Soil Analysis in Agricultural Chemistry (土壤农化分析), 3rd edn. Beijing: China Agriculture Publisher, 2000. pp 263–271 (in Chinese)
[10]Ling Q-H(凌启鸿). Crop Population Quality (作物群体质量). Shanghai: Shanghai Scientific and Technical Publisher, 2000. pp 154–197 (in Chinese)
[11]Wei H-Y(魏海燕), Zhang H-C(张洪程), Hang J(杭杰), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Zhang S-F(张胜飞), Ma Q(马群), Zhang Q(张庆), Zhang J(张军). Characteristics of N accumulation and translocation in rice genotypes with different N use efficiencies. Acta Agron Sin (作物学报), 2008, 34(1): 119–125 (in Chinese with English abstract)
[12]Zheng Y M, Ding Y F, Wang Q S, Li G H, Wu H, Yuan Q, Wang H Z, Wang S-H. Effect of nitrogen applied before transplanting on NUE in rice. Agric Sci China, 2007, 6(7): 842–848
[13]DingY-F(丁艳锋), Liu S-H(刘胜环), Wang S-H(王绍华), Wang Q-S(王强盛), Huang P-S(黄丕生), Ling Q-H(凌启鸿). Effects of the amount of basic and tillering nitrogen applied on absorption and utilization of nitrogen in rice. Acta Agron Sin (作物学报), 2004, 30(8): 739–744 (in Chinese with English abstract)
[14]Chen X-Q(陈小琴), Zhou J-M(周健民), Wang H-Y(王火焰), Du C-W(杜昌文). Effect of N varieties application and interaction of N and K fertilizers on rice growth and nutrients uptake. Chin Agric Sci Bull (中国农学通报), 2007, 23(6): 376–382 (in Chinese with English abstract)
[15]Ntanos D A, Koutroubas S D. Dry matter and N accumulation and translocation for indica and japonica rice under Mediterranean conditions. Field Crops Res, 2002, 74:93–101
[16]Cheng J-F(程建峰), Dai T-B(戴廷波), Cao W-X(曹卫星), Jiang D(姜东),Pan X-Y(潘晓云). Nitrogen metabolic characteristics in rice genotypes with different nitrogen harvest index. Acta Agron Sin (作物学报), 2007, 33(3): 497–502 (in Chinese with English abstract)
[17]Lin X Q, Zhou W J, Zhu D F, Chen H Z, Zhang Y P. Nitrogen accumulation, remobilization and partitioning in rice under an improved irrigation practice. Field Crops Res, 2006, 96: 448–454
[18]Ohnishi M, Horie T, Homma K, Supapoj N, Takano H, Yamamoto S. Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast Thailand. Field Crops Res, 1999, 64:109–120
[19]Peng S B, Buresh R J, Huang J L, Yang J C, Zhou Y B, Zhong X H, Wang G H, Zhang F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res, 2006, 96: 37–47
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[15] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!