欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (6): 1078-1085.doi: 10.3724/SP.J.1006.2009.01078

• 耕作栽培·生理生化 • 上一篇    下一篇

氮素对花铃期短期渍水棉花根系生长的影响

郭文琦,赵新华,陈兵林,刘瑞显,周治国*   

  1. 南京农业大学/农业部南方作物生理生态重点开放实验室,江苏南京210095
  • 收稿日期:2008-10-14 修回日期:2009-03-17 出版日期:2009-06-12 网络出版日期:2009-04-16
  • 通讯作者: 周治国,E-mail:giscott@njau.edu.cn;Tel:025-84396813;Fax:025-84396813
  • 基金资助:

    本研究由国家自然科学基金项目(30771279),高等学校博士学科点专项科研基金(200803070017),农业部农业行业计划项目(nyhyzx07-005)资助。

Effects of Nitrogen on Cotton(Gossypium hirsutum L.) Root Growth under Short-Term Waterlogging during Flowering and Boll-Forming Stage

GUO Wen-Qi,ZHAO Xin-Hua,CHEN Bing-Lin,LIU Rui-Xian,ZHOU Zhi-Guo*   

  1. Key Laboratory of Crop Physiology and Ecology in Southern China,Ministry of Agriculture/Nanjing Agricultural University,Nanjing 210095,China
  • Received:2008-10-14 Revised:2009-03-17 Published:2009-06-12 Published online:2009-04-16
  • Contact: ZHOU Zhi-Guo,E-mail:giscott@njau.edu.cn;Tel:025-84396813;Fax:025-84396813

摘要:

2005—2006在江苏南京农业大学卫岗试验站进行盆栽试验,设置正常灌水(土壤含水量为田间持水量的75%左右)和棉花花铃期土壤短期渍水处理(将正常灌水的棉花增加灌水至盆内有可见明水,持续8 d,然后用导管排除表面水层,使盆内土壤含水量逐渐恢复到田间持水量的75%左右)每个水分处理设置3个氮素水平(03.737.46 g N pot-1分别相当于大田0240480 kg N hm-2)研究氮素对花铃期短期渍水棉花根系生长的影响。结果表明,在渍水处理结束时,与正常灌水处理相比,根干重和根冠比(RS)均降低;根系可溶性蛋白含量、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性降低,过氧化物酶(POD)活性升高,丙二醛(MDA)含量升高;棉花根系活力和单株光合速率(CAP)显著降低。增加施氮可降低渍水棉花根系SOD活性,提高PODCAT活性,以3.73 g N pot-1(240 kg N hm-2)施氮水平下的棉花根干物重最大,根系MDA含量最低,根系活力最强,单株光合速率(CAP)最高,相应籽棉产量最高。渍水停止15 d,渍水棉花根系抗氧化酶活性和MDA含量与正常灌水处理的差异较小;施氮仍可提高棉花根系PODCAT活性,降低MDA含量,增强根系活力,提高CAP

关键词: 棉花, 花铃期, 土壤渍水, 氮素, 根系生长

Abstract:

The flowering and boll development stage is the key period for cotton quality and yield. Waterlogging during this period significantly inhibits cotton development and reduces final yield. Nitrogen fertilizer is considered to be an effective up-regulatory element for crop growth. The objective of this investigation was to evaluate effects of nitrogen on cotton resistance to soil waterlogging in terms of the changes of root dry matter accumulation, antioxidant enzyme activities and root vigor under short-term waterlogging. A pot experiment wasconducted with three N levels (0, 3.73, and 7.46 g N pot-1 equivalent to 0, 240, and 480 kg N ha-1, respectively), waterlogging for eight days and then recovering for fifteen days. The results showed that the root dry matter weight and the Root/Shoot ratio of plants by waterlogged decreased, and the root dry matter weight reached a peak at the 240 kg N ha-1 under waterlogging, but the root/shoot ratio decreased with the increase of N application. Under waterlogging, soluble protein content significantly decreased in comparison with well-watered cotton, and the reduced degree increased with increasing N application. Malondialdehyde (MDA) content in cotton roots was significantly (P <0.05) increased, with the lowest at the 240 kg N ha-1 during waterlogging. Application of N increased the activities of peroxidase (POD) and catalase (CAT) of cotton roots, but decreased superoxide dismutase (SOD) activity during waterlogging. Both root vigor and CAP decreased by waterlogging, were the highest at the 240 kg N ha-1. At the 15 d after terminating waterlogging, N application promoted root vigor and CAP, but decreased MDA content. These results suggest that appropriate N supply (240 kg N ha-1 in this investigation) may contribute to waterlogging resistance of cotton plants through adjusting the antioxidant enzyme activities of roots, decreasing lipid peroxidation and enhancing root vigor during waterlogging (waterlogging for eight days in this investigation), excessive N supply (480 kg N ha-1) has a deleterious effect on plant waterlogging resistance, however, more N should be supplied to waterlogged cotton pants after terminating waterlogging.

Key words: Cotton, Flowering and boll-forming stage, Soil waterlogging, Nitrogen, Root growth

[1] Hang H-L(韩会玲), Kang F-J(康凤君). Experiment and study on effect of moisture coerce on cotton producing. Trans CSAE (农业工程学报), 2001, 17(3): 37-40(in Chinese with English abstract)
[2] Bange M P, Milroy S P, Thongbai P. Growth and yield of cotton in response to waterlogging. Field Crops Res, 2004, 88: 129-142
[3] Xue X-P(薛晓萍), Zhou Z-G(周治国), Zhang L-J(张丽娟), Wang Y-L(王以琳), Guo W-Q(郭文琦), Chen B-L(陈兵林). Development and application of critical nitrogen concentration dilution model for cotton after flowering. Acta Ecol Sin (生态学报), 2006, 26(6): 1781-1791(in Chinese with English abstract)
[4] Halvoson A D, Reule C A. Nitrogen fertilizer requirements in an annual dryland cropping system. Agron J, 1994, 86: 315-318
[5] Zhou W, Zhao D, Lin X. Effects of Waterlogging on nitrogen accumulation and alleviation of waterlogging damage by application of nitrogen fertilizer and mixtalol in winter rape (Brassica napus L.). Plant Growth Regul, 1997, 16: 47-53
[6] Huang B, Johnson J W, Nesmith D S, Bridges D C. Growth, physiological and anatomical responses of two wheat genotypes to waterlogging and nutrient supply. J Exp Bot, 1994, 45: 193-202
[7] Sandhu B S, Singh B, Singh B, Khera K L. Maize response to intermittent submergence, straw mulching and supplemental N-fertilization in subtropical region. Plant Soil, 1986, 96: 45-56
[8] Jiang D, Fan X M, Dai T B, Cao W X. Nitrogen fertilizer rate and post-anthesis waterlogging effects on carbohydrate and nitrogen dynamics in wheat. Plant Soil, 2008, 304: 301-314

[9] Meyer W S, Reicosky D C, Barrs H D, Smith R C G. Physiological responses of cotton to a single waterlogging at high and low N-levels. Plant Soil, 1987, 102: 161-170
[10] Meng Y-L(孟亚利), Wang Y(王瑛), Wang L-G(王立国), Chen B-L(陈兵林), Zhang L-Z(张立桢), Shu H-M(束红梅), Zhou Z-G(周治国). Effect of the composite root population of wheat-cotton inter-cropping system on cotton root growth. Sci Agric Sin (中国农业科学), 2006, 39(11): 2228-2236(in Chinese with English abstract)
[11] Yang C M, Yang L Z, Yang Y X, Ouyang Z. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric Water Manage, 2004, 70: 67-81
[12] Ahsan N, Lee D G, Lee S H, Lee K W, Bahk J D, Lee B H. A proteomic screen and identification of waterlogging-regulated proteins in tomato roots. Plant Soil, 2007, 295: 37-51
[13] Drew M C. Plant injury and adaptation to oxygen deficiency in the root environment: A review. Plant Soil, 1983, 75: 179-199
[14] Hocking P J, Reicosky D C, Meyer W S. Effects of intermittent waterlogging on the mineral nutrition of cotton. Plant Soil, 1987, 101: 211-221
[15] Biemelt S, Keetman U, Mock H P, Griemm B. Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia. Plant Cell Enviorn, 2000, 23: 135-144
[16] Yan B, Dai Q, Liu X, Huang S, Wang Z. Flooding induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil, 1996, 179: 261-268
[17] Huang B, Johnson J W. Root respiration and carbohydrate status of two wheat genotypes in response to hypoxia. Ann Bot, 1995, 75: 427-432
[18] Wang K H, Jiang Y W. Antioxidant responses of creeping bentgrass roots to waterlogging. Crop Sci, 2007, 47: 232-238
[19] Dong S-T(董树亭). Research and determining method of crop canopy apparent photosynthesis under field condition. Tillage and Cultivation (耕作与栽培), 1988, 3: 62-64(in Chinese)
[20] Li H-S(李合生). Principles and techniques of plant physiological experiment. Beijing: Higher Education Press, 2000. pp 164-167(in Chinese)
[21] Rubio G, Casasola G, Lavado R S. Adaptations and biomass production of two grasses in response to waterlogging and soil nutrient enrichment. Oecologia, 1995, 102: 102-105
[22] Voesenek L A C J, Blom C W P M, Pouwels R H W. Root and shoot development of Rumex species under waterlogged conditions. Can J Bot, 1989, 67: 1865-1869
[23] Wang C-Y(王晨阳), Ma Y-X(马元喜), Zhou S-M(周苏玫), Zhu Y-J(朱云集), Li J-X(李九星), Wang H-C(王化岑). Effects of waterlogging on the metabolism of active oxygen and the physiological activities of wheat root systems. Acta Agron Sci (作物学报), 1996, 22(6): 712-719(in Chinese with English abstract)

[24] Li J-C(李金才), Wei F-Z(魏凤珍), Wang C-Y(王成雨), Yin J(尹钧). Effects of waterlogging on senescence of root system at booting stage in winter wheat. Acta Agron Sci (作物学报), 2006, 32(9): 1355-1360(in Chinese with English abstract)
[25] Zhai B-N(翟丙年), Sun C-M(孙春梅), Wang J-R(王俊儒), Li S-X(李生秀). Effects of nitrogen deficiency on the growth and development of winter wheat roots. Acta Agron Sci (作物学报), 2003, 29(6): 913-918(in Chinese with English abstract)
[1] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[2] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[3] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[4] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[5] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[6] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[7] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[8] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[9] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
[10] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[11] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[12] 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422.
[13] 谢呈辉, 马海曌, 许宏伟, 徐郗阳, 阮国兵, 郭峥岩, 宁永培, 冯永忠, 杨改河, 任广鑫. 施氮量对宁夏引黄灌区麦后复种糜子生长、产量及氮素利用的影响[J]. 作物学报, 2022, 48(2): 463-477.
[14] 阮俊梅, 张俊, 刘猷红, 董文军, 孟英, 邓艾兴, 杨万深, 宋振伟, 张卫建. 田间开放式增温对东北水稻氮素利用的影响[J]. 作物学报, 2022, 48(1): 193-202.
[15] 付正豪, 马中涛, 魏海燕, 邢志鹏, 刘国栋, 胡群, 张洪程. 不同机械化栽培方式下控释肥配比对迟熟中粳水稻产量形成及氮素吸收利用的影响[J]. 作物学报, 2022, 48(1): 165-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!