欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (7): 1261-1267.doi: 10.3724/SP.J.1006.2009.01261

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

偏凸-柱穗山羊草双二倍体与普通小麦不同杂种世代的染色体及性状分离特点

王玉海14,王黎明5,鲍印广1,崔法1,郝元峰1,宗浩1,李兴锋1,高居荣3,王洪刚123*   

  1. 1山东农业大学作物生物学国家重点实验室,山东泰安271018;2山东农业大学农学院,山东泰安271018;3国家小麦改良中心泰安分中心,山东泰安271018;4枣庄学院,山东枣庄277100;5河南科技大学农学院,河南洛阳471003
  • 收稿日期:2008-11-28 修回日期:2009-03-23 出版日期:2009-07-12 网络出版日期:2009-05-19
  • 通讯作者: 王洪刚, E-mail: hgwang@sdau.edu.cn
  • 作者简介:E-mail: yhwang92@163.com
  • 基金资助:

    本研究由国家科技支撑计划(2006BAD13B02)资助。

Segregation of Chromosomes and Traits of Hybrid Generations Derived from Cross between Triticum aestivum and Amphidiploid of Aegilops ventricosa X Aegilops cylindrica

WANG Yu-Hai1,4,WANG Li-Ming5,BAO Yin-Guang1,CUI Fa1,HAO Yuan-Feng1,ZONG Hao1,LI Xing-Feng1,GAO Ju-Rong1,WANG Hong-Gang123*   

  1. 1State Key Laboratory of Crop Biology,Shandong Agricultural University,Tai'an 271018,China;2Agronomy College of Shandong Agricultural University,Tai'an 271018,China;3Subcenter of National Wheat Improvement Center,Tai'an 271018,China;4Zaozhuang College,Zaozhuang 277100,China;5College of Agronomy,Henan Science and Technology University,Luoyang 471003,China
  • Received:2008-11-28 Revised:2009-03-23 Published:2009-07-12 Published online:2009-05-19
  • Contact: WANG Hong-Gang, E-mail: hgwang@sdau.edu.cn
  • About author:E-mail: yhwang92@163.com

摘要:

探讨偏凸山羊草-柱穗山羊草双二倍体SDAU18在小麦遗传改良中的利用价值,SDAU18和普通小麦品种烟农15及其9个杂种世代为材料,分析不同自交和回交世代染色体和性状分离的特点。结果表明,随自交和以烟农15为轮回亲本回交世代的增加,染色体数目逐渐减少,回交比自交能使后代的染色体数目更快趋近普通小麦的42条,至F5BC3F1代,染色体数目为42的植株已分别达93.9%92.0%。与自交世代相比,回交后代减数第一分裂中期的花粉母细胞的染色体构型较为简单,回交次数过多不利于外源染色体与普通小麦染色体发生重组,一般应以回交2~3次为宜;随自交和回交世代的增进,杂种的育性提高,至F3BC2F1代育性基本稳定。在不同杂种世代可分离出具有矮秆、大穗、大粒、对白粉病、条锈病免疫或高抗及外观品质优良的变异类型,以F3BC1F1代的变异类型最丰富。

关键词: 偏凸山羊草, 柱穗山羊草, 双二倍体, 小麦, 杂种后代, 染色体分离

Abstract:

SDAU18 is an amphidiploid derived from the cross between Aegilops ventricosa and Ae. cylindrical, which carries excellent traits from the both parents. Because of the good crossability with common wheat (Triticum aestivum L.), it also acts as a bridge material to transfer objective genes from Ae. ventricosa and Ae. cylindrical to improved wheat cultivarsthrough hybridization. To disclose the chromosome segregation of hybrid progenies derived from common wheat ´ SDAU18 cross, we used a common wheat cultivar Yannong 15 as female parent and recurrent parent to develop hybrid generations F1, F2, F3, F4, F5, BC1F1, BC2F1, BC3F1, and BC1F2. The mitosis in root tip cells and meiosis in pollen mother cells were observed. Agronomic traits, such as plant height, spike length, spikelet number per spike, grain number per spike, and seed-setting rate were also investigated in BC1F1, BC2F1, and BC3F1 generations. In higher generations of selfing and backcross, the chromosome number gradually decreased and eventually tended to 42, which was the same as common wheat. Backcrossing was able to fasten the process than selfing. In the F5 and BC3F1 generations, plants with 42 chromosomes were accounted for 93.9% and 92.0%, respectively. Chromosome configuration in PMCs MI was simpler in backcross generations than in selfing ones. Compared with the BC1F1 and BC2F1 generations, BC3F1 showed less diversity in chromosome configuration, indicating that excessive backcross resulted in less chromosomes recombination between SDAU18 and common wheat. Two or three rounds of backcross were feasible. With the increasing generation of selfing and backcross, fertility of the hybrid was improved till the stable status in F3 and BC2F1 generations. In various generations, variant plants with excellent traits were found, such as dwarf plant, huge spike, large grain, high resistance or immunity to powdery mildew and stripe rust, and good appearance of grain. In particular, the F3 and BC1F1 generations had the most variation types.

Key words: Aegilops ventricosa, Aegilops cylindrica, Amphidiploid, Wheat, Hybrid progenies, Chromosome segregation

[1] Xu N-Y(徐乃瑜). Plasmon differentiation in Triticum and Aegilops. Hereditas (遗传), 1987, 9(6): 28-32 (in Chinese)

[2] Golovnina K A, Glushkov S A, Blinov A G, Mayorov V I, Adkison L R, Goncharov N P. Molecular phylogeny of the genus Triticum L. Plant Syst Evol, 2007, 264: 195-216

[3] Ekiz H, Safi Kiral A, Akçin A, Simsek L. Cytoplasmic effects on quality traits of bread wheat (Triticum aestivum L.). Euphytica, 1998, 100: 189-196

[4] El Bouhssini M, Benlhabib O, Nachit M M, Houari A, Bentika A, Nsarellah N, Lhaloui S. Identification in Aegilops species of resistant sources to Hessian fly (Diptera: Cecidomyiidae) in Morocco. Genet Resour Crop Evol, 1998, 45: 343-345

[5] Zaharieva M, Dimov A, Stankova P, David J, Monneveux P. Morphological diversity and potential interest for wheat improvement of three Aegilops L. species from Bulgaria. Genet Resour Evol, 2003, 50: 507-517

[6] Spetsov P, Plamenov D, Kiryakova V. Distribution and characterization of Aegilops and Triticum species from the Bulgarian Black Sea Coast. Central Eur J Biol, 2006, 1: 399-411

[7] Zaharieva M, Prosperi J M, Monneveux P. Ecological distribution and species diversity of Aegilops L. genus in Bulgaria. Biodiversity & Conserv, 2004, 13: 2319-2337

[8] Farooq S, Azam F. Co-existence of salt and drought tolerance in Triticeae. Hereditas, 2001, 135: 205-210

[9] Landjeva S, Merakchijska-Nikolova M, Ganeva G. Copper toxicity tolerance in Aegilops and Haynaldia seedlings. Biol Plant, 2003, 46: 479-480

[10] Shi F, Endo T R. Genetic induction of chromosomal rearrangements in barley chromosome 7H added to common wheat. Chromosoma, 2000, 109: 358-363

[11] Zhang A M, Yu F T, Zhang F S. Alien cytoplasm effects on phytosiderophore release in two spring wheats (Triticum aestivum L.). Genet Resour Crop Evol, 2003, 50: 767-772

[12] Wang Y-H(王玉海), Zhang L(张玲), Zhang G(张光), Hao Y-F(郝元峰), Zhang Z-W(张志雯), Si Y-J(司玉君), Wang H-G(王洪刚). IdentificationofAegilops ventricosa-Aegilops cylindricaAmphiploidSDAU18. J Triticeae Crops (麦类作物学报), 2006, 26 (3): 18-21 (in Chinese with English abstract)

[13] Liu S-B(刘树兵). Development of Wheat Near Isogenic Introgression Lines and Characterization of Progenies Derived from Triticum aestivum × Ae. Longissima. The Post Doctoral Working Report of Chinese Academy of Agricultural Sciences, 2005, 31-33 (in Chinese with English abstract)

[14] Wang H-G(王洪刚), Kong L-R(孔令让), Jiang L-J(姜丽君), Zhang D-S(张德水). Segregation of chromosomes and traits in selfing and backcross progenies of hybrid between octoploid Tritelytrigia and Triticum aestivum. Acta Agron Sin (作物学报), 1996, 22(4): 508-513 (in Chinese with English abstract)

[15] Kong L-R(孔令让). The study on the tendency of segregation of chromosome in the different hybridized generations between Agrotriticum and common wheat. J Shandong Agric Univ (山东农业大学学报), 1990, 21(4): 1-7 (in Chinese with English abstract)

[16] Kong L-R(孔令让), Wang H-G(王洪刚), Zhao J-P(赵吉平), Jiang L-J(姜丽君). Cytogenetic studies of the offsprings of octoploid Agrotriticum × T. aestivum L. Acta Genet Sin (遗传学报), 1992, 19(5): 439-445(in Chinese with English abstract)

[17] Kong L-R(孔令让), Wang H-G(王洪刚), Zhao J-P(赵吉平), Jiang L-J(姜丽君). Cytogenetics of selfing offsprings between octoploid Agrotriticum and T. aestivum L. J Shandong Agric Univ (山东农业大学学报), 1992, 23(2): 142-148 (in Chinese with English abstract)

[18] Kong L-R(孔令让), Dong Y-C(董玉琛). Studies on the cytogenetics of progenies between Triticum aestivum L. and amphidiploid from Triticum durum-Ae. tauschii. Acta Agron Sin (作物学报), 1997, 23(4): 505-509 (in Chinese with English abstract)

[19] Han F P, Liu B, Fedak G, Liu Z H. Genomic constitution and variation in five partial amphiploids of wheat-Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet, 2004, 109: 1070-1076

[20] Li L-H(李立会), Li X-Q(李秀全). Describing Criteria for Germplasmic Resources of Wheat (小麦种质资源描述规范和数据标准). Beijing: Chinese Agriculture Press, 2006. pp 59-60 (in Chinese)
Carvalho A, Guedes-Pinto H, Mártín A, Heslop-Harrison P. Genome discrimination and chromosome pairing in the Hordeum chilense × Aegilops tauschii amphiploid. Euphytica, 2005, 144: 85-89
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!