欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (7): 1268-1273.doi: 10.3724/SP.J.1006.2009.01268

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆导入系群体芽期耐低温位点的基因型分析及QTL定位

蒋洪蔚1,2,李灿东1,2,刘春燕1,2,张闻博2,邱鹏程2,李文12福,高运来1,2,胡国华1,3*,陈庆山2,*   

  1. 黑龙江省农垦科研育种中心,黑龙江哈尔滨150090;2东北农业大学农学院,黑龙江哈尔滨150030;3高家大豆工程技术研究中心,黑龙江哈尔滨150050
  • 收稿日期:2008-10-30 修回日期:2009-03-23 出版日期:2009-07-12 网络出版日期:2009-05-19
  • 通讯作者: 胡国华, E-mail: Hugh757@vip.163.com, Tel: 0451-55199475; 陈庆山, E-mail: qshchen@126.com, Tel: 0451-55191945
  • 作者简介:E-mail: j444444@yahoo.cn
  • 基金资助:

    本研究由引进国际先进农业科学技术计划(948计划)项目(2006-G1(A)),国家高技术研究发展计划(863计划)项目(2006AA100104-3),黑龙江省博士后科研启动基金(LHK-04014)资助。

Genotype Analysis and QTL Mapping for Tolerance to Low Temperature in Germination by Introgression Lines in Soybean

JIANG Hong-Wei1,2,LI Can-Dong1,2,LIU Chun-Yan1,2,ZHANG Wen-Bo2,QIU Peng-Cheng2,LI Wen-Fu12,GAO Yun-Lai12,HU Guo-Hua13*,CHEN Qing-Shan2*   

  1. 1Land Reclamation Research & Breeding Centre of Heilongjiang,Harbin 150090,China;2College of Agriculture,Northeast Agricultural University,Harbin 150030 China;3 The National Research Center of Soybean Engineering and Technology,Harbin 150050,China
  • Received:2008-10-30 Revised:2009-03-23 Published:2009-07-12 Published online:2009-05-19
  • Contact: HU Guo-Hua, E-mail: Hugh757@vip.163.com, Tel: 0451-55199475; CHEN Qing-Shan, E-mail: qshchen@126.com, Tel: 0451-55191945
  • About author:E-mail: j444444@yahoo.cn

摘要:

利用美国大豆品种Clark (供体亲本)与主栽品种红丰11 (轮回亲本)所构建的回交导入系,经过严格的芽期耐低温筛选鉴定,得到46个在芽期耐低温性状上明显超过轮回亲本的导入系个体。利用这套选择群体结合随机对照群体和基因型分析,通过基于遗传搭车原理的卡方分析和单向方差分析方法,检测到分布于大豆10个连锁群的14个与大豆芽期耐低温相关的QTL。其中卡方分析检测到12个供体片段的超导入位点,对芽期耐低温性状表现为正效应。方差分析检测到5个位点,也表现为正效应,且其中Satt237SOYPRP1Satt540 3个位点是两种方法共同检测到的,应视为与耐低温直接相关的QTL。本研究旨在创建大豆芽期耐低温分子育种的检测方法平台,为大豆芽期耐低温研究提供有用的分子标记。

关键词: 大豆, 导入系, 芽期, 耐低温, QTL定位

Abstract:

Northeast of China is the main soybean production area. Low temperature is one of the main factors to reduce soybean yield and to limit soybean production spreading to north regions. Shortening the growth stage is considered as one way of solving the problem, but the effective way is to breed cultivars with low temperature to tolerance. The identification of low-temperature tolerance germplasm is the basis for soybean breeding. A set of backcross introgression lines were constructed with Hongfeng 11 as recurrent parent and Clark as donor parent, 46 individuals were screened out, which were more tolerant than recurrent parent Hongfeng 11 under low temperature condition. Fifty individuals from BC1F4 were used as control (random population). Fourteen QTLs on ten linkage groups for tolerance to low temperature in germination were detected with genotype analysis by chi-test and one-way ANOVA. Twelve excessive-introgression alleles from donor parent with positive effect were acquired by chi-square and 5 alleles by ANOVA. Satt237, SOYPRP1, and Satt540 were detected by the two methods, so the three loci should be the main effect QTL and more believable. Introgression lines were used for mapping QTL related with tolerance to low temperature in germination, and the molecular mechanism could be studied in the further research on the platform established in this study for molecular assisted breeding.

Key words: Soybean, Introgression lines, Germination stage, Low temperature tolerance, QTL mapping

[1] Shan C-Y(单彩云). Screening and Proteomics Research of Soybean Low Temperature Tolerance Germplasm. MS Dissertation of Northeast Agricultural University, 2008. pp 30-31 (in Chinese with English abstract)
[2] Hu G-Y(胡国玉). Genetic Analysis and Molecular Marker on Chilling Tolerance of Soybean in Early Stage. MS Dissertation of Nanjing Agricultural University, 2005. pp 44-46 (in Chinese with English abstract)
[3] Song Y(宋友), Wang J-A(王继安). Identification of chilling tolerance: In: Early soybean varieties at germination and seeding growth stages. Soybean Sci (大豆科学), 2006, 25(3): 99-303 (in Chinese with English abstract)
[4] Wang P(王萍), Tao D(陶丹), Song H-X(宋海星), Song L-Q(宋立泉), Zhang Y-H(张玉华), Yuan Y(袁鹰), Ran Y-Z(冉彦中), Yin T-F(尹田夫). The response of soybeans to low temperature at blooming stage. Crops (作物杂志), 2000, (2): 5-6 (in Chinese)
[5] Eshed Y, Zamir D. An introgression line population of Lycopersicon pernellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147-1162
[6] Fulton T M, Nelson J C, Tanksley S D. Introgression and DNA marker analysis of Lycopersicon peruvianum, a wild relative of the cultivated tomato into Lycopersicon esculentum, followed through three successive backcross generations. Theor Appl Genet, 1997, 95: 895-902
[7] Zamir D, Eshed Y. Tomato Genetics and Breeding Using Nearly Isogenic Introgression Lines Derived from Wild Species. In: Paterson A H ed. Molecular Dissection of Complex Traits. Boca Raton, FL: CRC Press, 1998. pp 207-217
[8] Zhang Y S, Luo L J, Xu C G, Zhang Q F, Xing Y Z. Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa). Theor Appl Genet, 2006, 113: 361-368
[9] Steele K A, Price A H, Shashidhar H E, Witcombe J R. Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet,2006, 112: 208-221
[10] Chen B-X(陈冰嬬), Shi Y-R(石英尧), Cui J-T(崔金腾), Qian Y-L(钱益亮), Liu H-Y(刘海燕), Zhang L-K(张力科), Wang H(王辉), Gao Y-M(高用明), Zhu L-H(朱苓华), Li Z-K(黎志康). QTL detection of grain size and shape with BC2F2 advanced backcross population of rice (Oryza sativa L.). Acta Agron Sin(作物学报), 2008, 34(8): 1299-1307 (in Chinese with English abstract)

[11] Sun Y(孙勇), Zang J-P(藏金萍), Wang Y(王韵), Zhu L-H(朱苓华), Xu J-L(徐建龙), Li Z-K(黎志康). Mining favorable salt-tolerant QTL from rice germplasm using a backcrossing introgression line population. Acta AgronSin (作物学报), 2007, 33(10): 1611-1617 (in Chinese with English abstract)
[12] Zhao Y-F(赵永锋), Chen J-T(陈景堂), Zhu L-Y(祝丽英), Jia X-Y(贾晓艳), Huang Y-Q(黄亚群), Liu Z-Z(刘志增). Status of research on application and establishment of SSILs in maize. J Maize Sci (玉米科学), 2006, 14(3): 17-19(in Chinese with English abstract)
[13] Fu D-X (傅大雄), Ruan R-W(阮仁武), Liu D-J(刘大军), Zong X-F(宗学凤), Yin J-M(殷家明), Hu K(胡奎). Study of dwarfing wheat sources using near isogenic lines. Sci Agric Sin (中国农业科学), 2007, 40(4): 655-664 (in Chinese with English abstract)
[14] Ramsay L D, Jennings D E, Bohuon E J R, Arthur A E, Lydiate D J, Kearsey M J, Marshall D F. The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci. Genome, 1996, 39: 558-567
[15] Howell P M, Marshall D J. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome, 1996, 39: 348-358
[16] Burns M J, Barnes S R, Boeman J C X. QTL analysis of an intervarietal set of substitution line in Brassica napus: (i) Seed oil content and fatty acid composition. Heredity, 2003, 90: 39-48
[17] Schlotterer C. Hitchhiking mapping-functional genomics from the population genetics from the population genetics perspective. Trends Genet, 2003, 19: 32-38
[18] Choi I Y, Hyten D L, Matukumalli L K, Song Q J, Chaky J M, Quigley C V, Chase K, Lark K G, Reiter R S, Yoon M S, Hwang E Y, Yi S I, Young N D, Shoemaker R C, van Tassell C P, Specht J E, Cregan P B. A soybean transcript map: Gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics, 2007, 176: 685-696
[19] Harr B, Kauer M, Schlotterer C, Hitchhiking mapping: A population-based fine-mapping strategy for adaptive mutations in Drosophilamelanogaster. Proc Natl Acad Sci USA, 2002, 99: 32-28
Zheng T-Q(郑天清), Xu J-L(徐建龙), Fu B-Y(傅彬英), Gao Y-M(高用明), Veruka S, Lafitte H R, Zhai H-Q(瞿虎渠), Wan J-M(万建民), Li Z-K(黎志康). Application of Genetic hitch-hiking and ANOVA in identification of loci for drought tolerance in populations of rice from directional selection. Acta Agron Sin (作物学报), 2007, 33(5): 799-804 (in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!