欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (8): 1525-1531.doi: 10.3724/SP.J.1006.2009.01525

• 耕作栽培·生理生化 • 上一篇    下一篇

以光周期处理与分期播种试验综合鉴定大豆品种的光温反应

费志宏1,2,3,吴存祥2,**,孙洪波2,侯文胜2,张宝石1,韩天富2,*   

  1. 1沈阳农业大学农学院,辽宁沈阳110161;2中国农业科学院油料作物研究所 国家农作物基因资源与基因改良重大科学工程,北京100081;3黑龙江八一农垦大学农学院,黑龙江大庆163319
  • 收稿日期:2009-02-17 修回日期:2009-03-13 出版日期:2009-08-12 网络出版日期:2009-06-10
  • 通讯作者: 韩天富, E-mail: hantf@mail.caas.net.cn; Tel: 010-82108784
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA100104-9),国家自然科学基金项目(30471054和30490250),农业科技成果转化项目(2007GB23260401),现代农业生产技术体系建设专项(nycytx-004),国家重点基础研究发展计划(973计划)项目(2009CB118400)资助

Identification of Photothermal Responses in Soybean by Integrating Photoperiod Treatments with Planting-Date Experiments

FEI Zhi-Hong1,2,3,WU Cun-Xiang2,**,SUN Hong-Bo2,HOU Wen-Sheng2,ZHANG Bao-Shi1,HAN Tian-Fu2,*   

  1. 1 College of Agronomy, Shenyang Agricultural University, Shenyang110161, China; 2 National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 College of Agronomy, Heilongjiang August First Land Reclamation University, Daqing 163319, China
  • Received:2009-02-17 Revised:2009-03-13 Published:2009-08-12 Published online:2009-06-10
  • Contact: HAN Tian-Fu, E-mail: hantf@mail.caas.net.cn; Tel: 010-82108784

摘要:

设置短日照(12 h)和长日照(16 h)两种光周期处理,并以春播模拟低温、夏播模拟高温条件,形成长日+低温、长日+高温、短日+低温、短日+高温4种光温组合。2007年对近年育成的10个北方春大豆[Glycine max (L.) Merr.]品种()18个黄淮海夏大豆品种()进行了光温反应特性鉴定。2008年对50份材料进行了光周期反应鉴定。结果表明,不论在低温(春播)还是高温(夏播)条件下,短日照均加快大豆的发育进程,导致开花提前;不论在长日照还是短日照条件下,高温均减少出苗至初花的日数。光周期和温度对大豆的发育存在明显的互作,随着温度的升高,短日照促进大豆发育的效应有所加强;随着日照的缩短,高温加快发育的作用也有所增大。供试大豆品种生态类型在光周期反应敏感度(PRS)、温度反应敏感度(TRS)及光温综合反应敏感度(PTCRS)等方面均存在显著差异。北方春大豆品种的上述3个指标均小于黄淮海夏大豆品种,但前者在不同光照条件下的温度反应敏感度差值和在不同温度条件下的光周期反应敏感度差值均较后者高,说明北方春大豆品种光温互作效应较强。

关键词: 大豆, 生态类型, 光周期, 温度, 广温互作

Abstract:

Soybean [Glycine max (L.) Merr.] is a short-day crop that favors temperate weather. There have been a lot of studies on the responses to photoperiod, temperature or photothermal comprehensive regimes in soybean. However, little work has been conducted in the interactive effects of photoperiod and temperature on the development of soybean. To fully understand the photothermal responses of soybean and to identify the varietal variations in these traits, we designed two photoperiodic treatments of 12 h (short day or SD) and 16 h (long day or LD) integrated with two thermal conditions, high temperature (HT) (summer seeding in Beijing) and low temperature (LT) (spring seeding) in the current study. In 2007, the responses to the photoperiod, temperature, and photoperiod-temperature combinations of 10 spring sowing soybean varieties (lines) from the Northeast and 18 summer sowing varieties (lines) from Yellow-Huai-Hai River Valleys of China were identified in 4 photothermal regimes (LD+LT, LD+HT, SD+LT, SD+HT). In 2008, 50 varieties (lines) were used to test the photoperiodic responses. The results showed that SD promoted the developmental rate of soybean regardless of the temperature conditions; HT shortened the number of the days from emergence to flowering no matter whether the photoperiod was long or short. There was significant interaction between temperature and photoperiod from emergence to flowering. With the increase of temperature, the promotive effect of SD on developmental rate of soybean was enhanced, and the HT hastening effect was strengthened by SD as well. The apparent differences in photoperiod response sensitivity (PRS), temperature response sensitivity (TRS) and photothermal comprehensive response sensitivity (PTCRS) between ecotypes were observed. The above three indices of spring sowing soybean varieties from the Northeast were all lower than those of summer sowing varieties from Yellow-Huai-Hai River Valleys. However, the differences between TRS values under the two photoperiod treatments and that between PRS values under the two temperature conditions in spring sowing soybean varieties from the Northeast were both larger than those in summer sowing varieties from the Valleys, and it indicated that there was higher photoperiod × temperature interaction in the spring sowing varieties. The relationship between photothermal responses of soybean varieties and their ecological adaptability was discussed, and it proposed that, in breeding program, emphasis should be paid not only on the identification of responses of soybean varieties to the individual photoperiod or temperature factor but also on the photothermal interaction.

Key words: Soybean, Ecotype, Photoperiod, Temperature, Photothermal interaction

[1] Wang J-L(王金陵), Wu Y-X(武镛祥), Wu H-L(吴和礼), Sun S-C(孙善澄). Analysis on photoperiod ecotypes of cultivated soybean originated from different locations of China. Acta Agric Sin (农业学报), 1956,7(3): 169-180 (in Chinese)

[2] Wang Z C, Reddy V R, Acock M C. Testing for early photoperiod insensitivity in soybean. Agron J, 1998, 90: 389-392
[3] Roberts R H. Further studies of the effects of temperature and other environmental factors upon the photoperiodic responses of plant. J Agric Res, 1939, 59: 699-709
[4] Ellis R H, Collinson S T, Hudson D, Patefield W M. The analysis of reciprocal transfer experiments to estimate the duration of the photoperiod-sensitive and photoperiod insensitive phases of plant development: An example in soybean. Ann Bot, 1992, 70: 87-92

[5] Han T-F(韩天富), Wang J-L(王金陵), Fan B-B(范彬彬), Yao W-Q(姚文秋), Yang Q-K(杨庆凯). Effects of post-flowering daylength on agronomic characters of soybean. Chin J Appl Ecol (应用生态学报), 1996, 7: 167-173 (in Chinese with English abstract)
[6] Nian H(年海), Lu Y-G(卢永根), Huang H(黄鹤), Yan X-L(严小龙). Studies on ecological types of pre- and post-flowering photoperiodic responses of soybean genotypes over different sowing seasons in Guangzhou. Suppl J Sun Yat-Sen Univ (中山大学学报论丛), 1997, (5): 77-82 (in Chinese with English abstract)

[7] Upadhyay A P, Ellis R H, Summerfield R J, Roberts E H, Qi A. Characterization of photothermal flowering responses in maturity isolines of soybean (Glycine max) cv. Clark. Ann Bot, 1994, 74: 87-96
[8] Kantolic A G, Slafer G A. Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flowering. Ann Bot, 2007, 99: 925-933
[9] Rahman M M, Hampton J G, Hill M J. Soybean development under the cool temperate environment of Canterbury, New Zealand. J New Seeds, 2006, 7: 17-36

[10] Câmara G M S, Sediyama T, Dourado-Neto D, Bernardes M S. Influence of photoperiod and air temperature on the growth, flowering and maturation of soybean. Sci Agric, 1997, 54: 149-154
[11] Yang Z-P(杨志攀), Zhang X-J(张晓娟), Cai S-P(蔡淑平), Qiu D-Z(邱德珍), Wang G-X(王国勋), Zhou X-A(周新安). Response of short juvenility varieties to photoperiods: I. Response to sowing dates. Chin J Oil Crop Sci (中国油料作物学报), 2000, 22(3): 35-38 (in Chinese with English abstract)
[12] Wang Y-S(汪越胜), Ma H-H(马宏惠). Response to photo-temperature conditions of days to flowering of soybean ecotypes from China. J Anhui Norm Univ (安徽师范大学学报), 2000, 23(1): 40-46 (in Chinese with English abstract)
[13] Cober E R, Stewart D W, Voldeng H D. Photoperiod and temperature responses in early-maturing, near-isogenic soybean lines. Crop Sci, 2001, 41: 721-727
[14] Agele S O, Adenawoola A R, Doherty M. Growth response of soybean lines contrasting photothermal and soil moisture regimes in a Nigerian tropical rainforest. Intl J Biotronics, 2004, 33: 49-64
[15] Han T-F(韩天富). Photoperiodism in Soybean. In: Wang L-Z(王连铮), Guo Q-Y(郭庆元), eds. Contemporary Soybean Research in China. Beijing: Jindun Press, 2007. pp 211-220 (in Chinese)

[16] Wang G-X(王国勋), Luo X-H(罗学华), Li Y-H(李友华). Discussion about the ecological type of duration and its uses in introduction of soybean (Soja max L.) in China. Soybean Sci (大豆科学), 1982, 1(1): 33-40 (in Chinese with English abstract)
[17] Yang Z-P(杨志攀), Zhang X-J(张晓娟), Cai S-P(蔡淑平), Qu D-Z(邱德珍), Wang G-X(王国勋), Zhou X-A(周新安). Response of short juvenility varieties to photoperiods: Ⅲ. Response to long daylength. Soybean Sci (大豆科学), 2001, 20(3): 191-196 (in Chinese with English abstract)

[18] He Y-Z(何言章), He Y-L(何元农), Liu Z-S(刘支胜). Study on photoperiodic characters of soybean: IV. Response and relation of vegetative and reproductive growth to the photoperiod. Guizhou Agric Sci (贵州农业科学), 1994, (1): 21-26 (in Chinese with English abstract)
[19] Han T-F(韩天富), Wu C-X(吴存祥), Yang H(杨华), Shao G-H(邵桂花). Investigation of floral abortion in spring-sown soybean variety of Zhonghuang 4. Soybean Bull (大豆通报), 2000, (5): 14 (in Chinese)
[20] Han T, Wu C, Tong Z, Mentreddy R S, Tan K, Gai J. Postflowering photoperiod regulates vegetative growth and reproductive development of soybean. Environ Exp Bot, 2006, 55: 120-129
[21] Wu C, Ma Q, Yam K M, Cheung M Y, Xu Y, Han T, Lam H M, Chong K. In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean
[Glycine max (L). Merr. ] flowering reversion system. Planta, 2006, 223: 725-735
[22] Fehr W R, Caviness C E. Stages of Soybean Development. Special Report 80, Cooperative Extension Service, Agriculture and Home Economic Experiment Station. Ames, Iowa: Iowa State University, 1977. pp 1-11
[23] Han T-F(韩天富), Gai J-Y(盖钧镒), Qiu J-X(邱家驯). Comparative study on pre- and post-flowering photoperiod response in various ecotypes of soybeans. Soybean Sci(大豆科学), 1998, 17(2): 129-134 (in Chinese with English abstract)
[24] Tang Q-Y (唐启义), Feng M-G (冯明光). DPSÓ DATA Processing System—Experimental Design, Statistical Analysis and Modeling. Beijing: Science Press, 2006 (in Chinese)
[25] Wu J-A(吴纪安). Utilization of heat resource and prevention of accumulated temperature loss in soybean production of Heihe Municipality. Crops (作物杂志), 2007, (2): 32-35 (in Chinese)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 徐昕, 秦超, 赵涛, 刘斌, 李宏宇, 刘军. GmELF3s调控大豆开花时间和生物钟节律的功能分析[J]. 作物学报, 2022, 48(4): 812-824.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!