欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (8): 1558-1561.doi: 10.3724/SP.J.1006.2009.01558

• 研究简报 • 上一篇    下一篇

cpt1基因与水稻根负向光性的关系

汪月霞1,2,王忠2,*,刘全军1,赵会杰1,顾蕴洁2,钱晓旦2,袁志良1   

  1. 1河南农业大学生命科学学院,河南郑州450002;2扬州大学生物科学与技术学院,江苏扬州225009
  • 收稿日期:2008-11-15 修回日期:2009-02-17 出版日期:2009-08-12 网络出版日期:2009-06-11
  • 通讯作者: 王忠, E-mail: wangzhong@yzu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30871467)和江苏省高校研究生科技创新计划项目资助。

Relationship between cpt1 Gene and the Negative Phototropism in Rice Roots

WANG Yue-Xia12,WANG Zhong2*,LIU Quan-Jun1,ZHAO Hui-Jie1,GU Yun-Jie2,YUAN Zhi-Liang1   

  1. 1Coolege of Life Sciences,Henan Agricultural University,Zhengzhou 450002,China;2College of Biosciences and Biotechnology,Yangzhou University Yangzhou 225009,China
  • Received:2008-11-15 Revised:2009-02-17 Published:2009-08-12 Published online:2009-06-11
  • Contact: WANG Zhong, E-mail: wangzhong@yzu.edu.cn

摘要:

为了研究cpt1基因与水稻根负向光性运动的关系,探讨IAA横向运输与水稻根负向光性运动的关系。检测了外源试剂CaCl2EDTA以及IAA对水稻根的负向光性运动的效应,并采用RT-PCR的方法验证了不同外源试剂对cpt1基因表达的影响。结果表明,水稻根经光照24 h后,与对照相比,1 mg L-1CaCl20.001 mg L-1IAA能明显促进水稻根负向光性的弯曲生长,1 mg L-1EDTA(CaCl2的抑制剂)明显抑制水根负向光性的弯曲生长;cpt1基因的表达受上述外源试剂诱导,并表现与水稻根的负向光性生长呈明显的正相关性,推测IAA的横向运输及其运输载体CPT1蛋白对水稻根的负向光性运动具重要作用。

关键词: 水稻, 负向光性, IAA载体蛋白, cpt1基因

Abstract:

With the purpose of studying the relationship between cpt1 gene and negative phototropism in rice roots, discussing the contribution of asymmetric distribution of IAA on negative phototropism in rice roots, CaCl2, EDTA and IAA were assayed for their effects on the negative phototropism in rice roots, as well as effects on the expression of cpt1 gene on the basis of reverse transcription-PCR. The result showed that, the negative phototropism in rice roots was improved by the treatment with 1 mg L-1 CaCl2 and 0.001 mg L-1 IAA in culture solution under light for 24 h but constrained by 1 mg L-1 EDTA. A similar effect was shown from the analysis of cpt1 gene expression, which suggested CPT1 protein could be induced by CaCl2 and IAA. The effects also showed a positive correlation between the expression of cpt1 and negative phototropism in rice roots. It could be supposed from present results that the asymmetric distribution of IAA is an important step for the negative phototropism process in rice roots, which probably is particularly associated with CPT1 protein as a carrier of IAA.

Key words: Rice, Root, Negative phototropism, IAA carrier protein, cpt1 gene

[1] Iino M. Phototropism in higher plants. In: Hader D, Lebert M, eds. Photomovement: ESP Comprehensive Series in Photosciences, Vol. 1, Amsterdam: Elsevier, 2001. pp 659-811

[2] Tokutomi S, Matsuoka D, Zikihara K. Molecular structure and regulation of phototropin kinase by blue light. Biochim Biophys Acta, 2008, 1784: 133-142

[3] Khurana J P, Poff K L. Mutants of Arabidopsis thaliana with altered phototropism. Planta, 1989, 178: 400-406

[4] Liscum E, Briggs W R. Mutants of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. Plant Physiol, 1996, 112: 291-296

[5] Kang B, Grancher N, Koyffmann V, Lardemer D, Burney S, Ahmad M. Multiple interactions between cryptochrome and phototropin blue-light signaling pathways in Arabidopsis thaliana. Planta, 2008, 227: 1091-1099

[6] Motchoulski A, Liscum E. Arabidopsis NPH3: A NPH1 photoreceptor-interacting protein essential for phototropism. Science, 1999, 286: 961-964

[7] Inoue S I, Kinoshita T, Matsumoto M, Nakayama K I, Doi M, Shimazaki K. Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc Natl Acad Sci USA, 2008, 105: 5626-5631

[8] Pedmale U V, Liscum E. Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3. J Biol Chem, 2007, 282: 19992-20001

[9] Sakai T, Kagawa T, Kasahara M, Swartz T E, Christie J M, Briggs W R, Wada M, Okada K. Arabidopsis nph1 and npl1: Blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA, 2001, 98: 6969-6974

[10] Fankhauser C, Yeh K C, Lagarias J C, Zhang H, Elich T D, Chory J. PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science, 1999, 284: 1539-1541

[11] Lariguet P, Schepens I, Hodgson D, Pedmale U V, Trevisan M, Kami C, de Carbonnel M, Alonso J M, Ecker J R, Liscum E, Fankhauser C. Phytochrome kinase substrate 1 is a phototropin 1 binding protein required for phototropism. Proc Natl Acad Sci USA, 2006, 103: 10134-10139

[12] Sakai T, Wada T, Ishiguro S, Okada K. RPT2: A signal transducer of the phototropic response in Arabidopsis. Plant Cell, 2000, 12: 225-236

[13] Boccalandro H E, Simone S N D, Bergmann-Honsberger A, Schepens I, Fankhauser C, Casal J J. PHYTOCHROME KINASE SUBSTRATE1 regulates root phototropism and gravitropism. Plant Physiol, 2008, 146: 108-115

[14] Iino M. Mediation of tropisms by lateral translocation of endogenous indole-3-acetic acid in maize coleoptiles. Plant Cell Environ, 1991, 14: 279-286.

[15]Mo Y W, Wang Z, Qian S Q, Gu Y J. Effect of indoleacetic acid (IAA) on the negative phototropism of rice root. Rice Sci, 2004, 11(3): 125-128

[16] Haga K, Takano M, Neumann R, Iino M. The rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell, 2005, 17: 103-115

[17] Haga K, Iino M. Asymmetric distribution of auxin correlates with gravitropism and phototropism but not with autostraightening (autotropism) in pea epicotyls. J Exp Bot, 2006, 57: 837-847

[18] Harper R M, Stowe-Evans E L, Luesse D R, Muto H, Tatematsu K, Watahiki M K, Yamamoto K, Liscum E. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue.Plant Cell, 2000, 12: 757-770

[19] Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki M K, Harper R M, Liscum E, Yamamoto K T. MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell, 2004, 16: 379-393

[20] Muday G K, Murphy A S. An emerging model of auxin transport regulation. Plant Cell, 2002, 14: 293-299

[21] Geldner N, Friml J, Stierhof Y D, Jurgens G, Palme K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking.Nature, 2001, 413: 425-428

[22] Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K. Lateral relocation of Auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature, 2002, 415: 806-809

[23]Gu Y-J(顾蕴洁), Wang Z(王忠), Wang W-X(王维学). The negative phototropism of rice root. Plant Physiol Commun (植物生理学通讯), 2001, 37(5): 396-398 (in Chinese with English abstract)

[24] Wang Z, Mo Y W, Qian S Q, Gu Y J. Negative phototropism of rice root and its influencing factors. Sci China (Ser C), 2002, 45(5): 485-496

[25] Harada A, Shimazaki K. Phototropins and blue light-dependent calcium signaling in higher plants. Photochem Photobiol, 2007, 83: 102-111

[26] Baum G, Long J C, Jenkins G I, Trewavas A J. Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Proc Natl Acad Sci USA, 1999, 96: 13554-13559

[27] Iino M, Neumann R. Phototropism of rice seedlings: Characterization and mutant isolation. Plant Cell Physiol, 2000, 41(suppl): S56
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!