作物学报 ›› 2010, Vol. 36 ›› Issue (05): 826-832.doi: 10.3724/SP.J.1006.2010.00826
卜洪震1,王丽宏2,肖小平3,杨光立3,胡跃高1,*,曾昭海1,*
BU Hong-Zhen1,WANG Li-Hong2,XIAO Xiao-Ping3,YANG Guang-Li3,HU Yue-Gao1,*,ZENG Zhao-Hai1*
摘要:
土壤微生物在地球化学循环、土壤有机质周转以及土壤肥力与质量方面发挥重要作用。选取双季稻区6种主要的水稻土类型,应用磷脂脂肪酸(PLFAs)分析方法,研究土壤类型对土壤微生物的结构和多样性的影响。结果表明,6种不同的土壤类型中共检测出了21种不同的磷脂脂肪酸类型,其中紫色土磷脂脂肪酸总量最高,达到107.05 ng g-1干土,河沙泥磷脂脂肪酸含量最低,为59.75 ng g-1干土。从革兰氏阳性菌、革兰氏阴性菌、真菌及相互间的比值变化看,6种土壤类型间差异较大。主成分分析结果表明,第一主成分和第二主成分可以解释总变异的76.7%,除C16:0外,大部分的非饱和脂肪酸和环式脂肪酸的变异可以在第一主成分中反映出来,第二主成分主要反映含羟基的脂肪酸变异。
[1] Torsvik V, Sørheim R, Goksøyr J. Total bacterial diversity in soil and sediment communities—a review. J Ind Microbiol, 1996, 17:170-178[2] Øvreås L, Torsvik V. Microbial diversity and community structure in two different agricultural soil communities. Microb Ecol, 1998, 36:303-315[3] Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review. Biol Fert Soils, 1999, 29: 111-129[4] Zelles L, Bai Q Y, Beck T, Beese F. Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils. Soil Biol Biochem, 1992, 24: 317-323[5] Robert P L, Honeycutt C W. Effect of different 3-year cropping systems on soil microbial communities and rhizoctonia diseases of potato. Ecol Epidemiol, 2006, 96: 68-79[6] Frostegard A, Baath E, Tunlid A. Shift in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem, 1993, 25 723-730[7] Yao H, He Z, Wilson M J, Campell C D. Microbial biomass and community structure in a sequence of soil with increasing fertility and changing land use. Microb Ecol, 2000, 40: 223-237[8] Ibekwe A M, Kennedy A C. Fatty acid methyl ester (FAME) profiles as a tool to investigate community structure of two agricultural soils. Plant Soil, 1999, 206:151-161[9] Waldrop M P, Balser T C, Firestone M K. Linking microbial community composition to function in a tropical soil. Soil Biol Biochem, 2000, 32: 1837-1864[10] Bossio D A, Scow K M, Gunapala N, Graham K J. Determination of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipids fatty acid profiles. Microb Ecol, 1998, 36: 1-12[11] Marschner P, Yang C H, Lieberei R, Crowley D E. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem, 2001, 33: 1437-1445[12] Bardgett R D, McAlister E.The measurement of soil fungal:bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol Fert Soils, 1999, 29: 282-290[13] Wang L-H(王丽宏), Zeng Z-H(曾昭海), Yang G-L(杨光立), Li H-B(李会彬), Xiao X-P(肖小平), Zhang F(张帆), Hu Y-G(胡跃高). Function of winter ryegrass grown in six different types of paddy soils. Acta Agron Sin (作物学报), 2007, 33(12): 1972-1976 (in Chinese with English abstract)[14] Zhu B(朱波), Hu Y-G(胡跃高), Xiao X-P(肖小平), Yang G-L(杨光立), Zhang F(张帆), Zeng Z-H(曾昭海). Effects of ryegrass on soil microbial biomass C, N in six different paddy soils. Chin Agric Sci Bull (中国农学通报), 2009, 25(3): 225-229 (in Chinese with English abstract)[15] Wen Q(文倩), Lin Q-M(林启美), Zhao X-R(赵小蓉), Li G-T(李贵桐), Zhao P-Y(赵沛一). Application of PLFA analysis in determination of soil microbial community structure in woodland, cropland, and grassland in farmland-pasture interleaving zone of north China. Acta Pedol Sin (土壤学报), 2008, 45(2): 321-327 (in Chinese with English abstract)[16] Feng Y, Motta A C, Reeves D W, Burmestera C H, Van Santena E, Osborn J A. Soil microbial communities under conventiona1-till and no-till continuous cotton systems. Soil Biol Biochem, 2003, 35: 1693-1703[17] Qi H-Y(齐鸿雁), Xue K(薛凯), Zhang H-X(张洪勋). Phospholipid fatty acid analysis and its applications in microbial ecology. Acta Ecol Sin (生态学报), 2003, 23(8): 1576-1582 (in Chinese with English abstract)[18] Bardgett R D, McAlister E. The measurement of soil fungal: Bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol Fert Soils, 1999, 29: 282-290[19] Caldern F J, Jackson L E, Scow K M, Rolstonc D E. Short-term dynamics of nitrogen, microbial activity, and phospholipid fatty acid after tillage. Soil Sci Soc Am J, 2001, 65: 118-126[20] Gelsomino A, Keijzer-Wolters A C, Cacco G, van Elsas J D. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J Microbiol Methods, 1999, 38: 1-15[21] Øvreås L. Population and community level approaches for analyzing microbial diversity in natural environments. Ecol Lett, 2000, 3: 236-251[22] Kaur A, Chaudhary A, Amarjeet K, Choudhary R, Kaushik R. Phospholipid fatty acid—A bioindicator of environment monitoring and assessment in soil ecosystem. Curr Sci, 2005, 89: 1103-1112[23] Saetre P, Baath E. Spatial variation and patterns of soil microbial community structure in a mixed sprucebirch stand. Soil Biol Biochem, 2000, 32: 909-917[24] Felix P J, Mahasin T. Phospholipid fatty acids in forest soil four years after organic matter removal and soil compaction. Appl Soil Ecol, 2001, 19: 173-182[25] Yao H Y, He Z L, Huang C Y. Phospholipid fatty acid profiles of Chinese red soils with varying fertility levels and land use histories. Pedosphere, 2001, 11: 97-103[26] Vepsalainen M, Erkomaa K, Kukkonen S, Vestberg M, Wallenius K, Maarit N R. The impact of crop plant cultivation and peat amendment on soil microbial activity and structure. Plant Soil, 2004, 264: 273-286[27] Zhang W J, Rui W Y, Tu C, Diab H G-447, Louws F J, Mueller J P, Creamer N, Bell M, Wagger M G, Hu S. Responses of soil microbial community structure and diversity to agricultural deintensification. Pedosphere , 2005, 15: 440[28] Hesselsoe M, Boysen S , Iversen N, Jørgensen L, Murrell J C, McDonald I, Radajewski S, Thestrup H, Roslev P. Degradation of organic pollutants by methane grown microbial consortia. Biodegradation, 2005, 16: 435-448[29] Kelly J J, Häggblom M M, Tate R L. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles. Biol Fert Soils, 2003, 38: 65-71[30] Keith R M J, Bryan N D, Bardgett R D, Livens F R. Seasonal changes in the microbial community of a salt marsh, measured by phospholipid fatty acid analysis. Biogeochemistry, 2002, 60: 77-96Dickens H E, Anderson J M. Manipulation of soil microbial community structure in bog and forest soils using chloroformfumigation. Soil Biol Biochem, 1999, 31: 2049-2058 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|