欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (06): 895-904.doi: 10.3724/SP.J.1006.2010.00895

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦抗旱品种的遗传多样性分析及株高优异等位变异挖掘

魏添梅1,2,昌小平2,闵东红1,景蕊莲2, *   

  1. 1西北农林科技大学农学院,陕西杨凌712100;2中国农业科学院作物科学研究所/国家农作物基因资源与基因改良重大科学工程/农业部作物种质资源利用重点开放实验室,北京100081
  • 收稿日期:2010-01-12 修回日期:2010-03-16 出版日期:2010-06-12 网络出版日期:2010-04-14
  • 通讯作者: 景蕊莲,E-mail:jingrl@caas.net.cn
  • 基金资助:

    本研究由国家科技支撑计划项目(2006BAD29B04)和国家高技术研究发展计划(863计划)项目(2006AA100201)资助。

Analysis of Genetic Diversity and Tapping Elite Alleles for Plant Height in Drought-Tolerant Wheat Varieties

 WEI Tian-Mei1,2,CHANG Xiao-Ping2,MIN Dong-Hong1,JING Juan-Lian2*   

  1. 1College of Agronomy,Northwest A& F University,Yanling 712100,China;2National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm & Biotechnology,the Ministry of Agriculture/Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China
  • Received:2010-01-12 Revised:2010-03-16 Published:2010-06-12 Published online:2010-04-14
  • Contact: JING Rui-Lian,E-mail:jingrl@caas.net.cn

摘要:

为了解北方冬麦区小麦抗旱品种的遗传多样性,筛选株高相关标记的等位变异,选用117个均匀分布于小麦各条染色体的SSR标记,对136份小麦抗旱品种进行分析。共检测到1 484个等位变异,平均每个标记12.6个等位变异,变化范围为2~42,供试材料的遗传信息含量(PIC)变化范围为0.016~0.941,平均为0.640。聚类分析把同一地区或育种单位育成的品种、具有共同亲本的姊妹品种聚为一类,部分相近年代选育的品种也分别聚在一类,国外材料的基因导入对育成品种的遗传基础产生了影响。关联分析表明,在旱地条件下与株高显著相关的标记有19(P<0.01),其中6个极显著相关(P<0.001);在水地条件下与株高显著相关的标记也有19个,其中7个极显著相关。水、旱两种条件下共检测出与株高极显著相关的标记9个,分别是Xbarc125(7D)Xbarc168(2D)Xgwm126(5A)Xgwm130(2B)Xgwm212(5D)Xgwm285(3B)Xgwm495(4B)Xgwm95(2A)Xwmc396(7B)其中Xgwm285220 bpXgwm495181 bpXgwm21299 bpXbarc125167 bp等位变异是与矮秆关联的优异等位基因

关键词: 遗传多样性, 等位变异, 株高, 关联分析, 小麦

Abstract:

To make advances in wheat breeding, it is important to study germplasm diversity of winter wheat accessions, and identify SSR markers associated with important agronomy traits, for example plant height. Plant height reduction has observably contributed to the lodging resistance and yield increase of wheat in the last decades. In this study, we selected 136 historical winter wheat accessions planted in northern China and 117 SSR markers evenly distributing on the chromosomes of wheat to reveal the genetic diversity. A total of 1484 alleles of loci were detected from the accessions. The average alleles per locus were 12.6 which varied from 2 to 42. The polymorphism information content (PIC) value ranged from 0.016 to 0.941, with an average of 0.640. Most of the similar varieties were cultivated by the same breeders or belonged to the similar ecotype. Some of them were in accordance with the pedigree information. The most varieties cultivated in different ages were also clustered together. A total of 19 significant markers associated with plant height were identified (P<0.01) under drought stress. Among them, Xbarc168 (2D), Xgwm285 (3B), Xgwm126 (5A), Xgwm95 (2A), Xgwm212 (5D)and Xwmc396 (7B) were significantly associated with plant height (P<0.001). In well-watered environment, a total of 19 significant marker-trait associations were also identified (P<0.01), of which Xgwm285 (3B), Xgwm95 (2A), Xbarc125 (7D), Xgwm212 (5D), Xwmc396 (7B), Xgwm130 (2B) and Xgwm495 (4B) were strongly associated with plant height (P<0.001). 220, 181, 167, and 99 bp were the elite alleles of Xgwm285, Xgwm495, Xbarc125 and Xgwm212 for reducing plant height, respectively. With the rapid development of molecular biology and genomics, it is expected to utilize association analysis more widely in genetic research, germplasm enhancement and breeding in wheat.

Key words: Genetic diversity, Allele, Plant height, Association alalysis, Wheat

[1] Zhang X-Y(张学勇), Tong Y-P(童依平), You G-X(游光霞), Hao C-Y(郝晨阳), Ge H-M(盖红梅), Wang L-F(王兰芬), Li B(李 滨), Dong Y-C(董玉琛), Li Z-S(李振声). Hitchhiking effect mapping: A new approach for discovering agronomic important genes. Sci Agric Sin (中国农业科学), 2006, 39(8): 1526-1535 (in Chinese with English abstract)

[2] Tanksley S D, McCouch S R. Seed bank and molecular maps: Unlocking genetic potential from the wild. Science, 1997, 277: 1063-1066


 

[3] Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M S, Weber W E. Mapping of quantitative trait loci determine agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921-936

[4] Farnir F, Coppieters W, Arranz J J, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Mni M, Nezer C, Simon P, Vanmanshoven P, Wagenaar D, Georges M. Extensive genome-wide linkage disequilibrium in cattle. Genome Res, 2000, 10: 220-227

[5] Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet, 1999, 22: 139-144

[6] Jorde L B. Linkage disequilibrium and the search for complex disease genes. Genome Res, 2000, 10: 1435-1444

[7] Eizonga G C, Agrama H A, Lee F N, Yan W, Jia Y. Identifying novel resistance genes in newly introduced blast resistant rice germplasm. Crop Sci, 2006, 46: 1870-1878

[8] Flint-Garcia S A, Thuillet A C, Yu J M, Pressoir G, Romero S M, Sharon E. Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler IV E S. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J, 2005, 44: 1054–1064

[9] Maccaferri M, Sanguineti M C, Enrico N, Roberto T. Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed, 2005, 15: 271-289

[10] Zhuang Q-S(庄巧生). Chinese Wheat Improvement and Pedigree Analysis (中国小麦品种改良及系谱分析). Beijing:China Agriculture Press, 2003

[11] Liu K J, Muse S V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128-2129

[12] Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945-959

[13] Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611-2620

[14]Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Mol Biol, 2005, 57: 461-485

[15] Jing R-L(景蕊莲), Chang X-P(昌小平). Applications of SSR markers in wheat germplasm.Crop Variety Resour (作物品种资源), 1999, (2): 17-20(in Chinese)

[16] Beló A, Zheng P Z, Luck S, Shen B, Meyer D J, Li B, Tingey S, Rafalski A. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics, 2008, 279: 1-10

[17] Andersen J R, Schrag T, Melchinger A E, Zein I, Lübberstedt T. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet, 2005, 111: 206-217

[18]Ducrocq S, Madur D, Veyrieras J B, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A. Key impact of Vgt1 on flowering time adaptation in maize: Evidence from association mapping and ecogeographical information. Genetics, 2008, 178: 2433-2437

[19]Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Mol Breed, 2007, 19: 341-356

[20] Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165-1177

[21] Li X-J(李小军), Xu X(徐鑫), Liu W-H(刘伟华), Li X-Q(李秀全), Li L-H(李立会). Genetic diversity of the founder parent Orofen and its progenies revealed by SSR markers. Sci Agric Sin (中国农业科学), 2009. 42(10): 3397-3404 (in Chinese with English abstract)

[22] Liu Z H, Anderson J A, Hu J, Friesen T L, Rasmussen J B & Faris J D. Wheat genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet, 2005, 111: 782-794

[23] Pritchard J K, Stephens M, Rosenberg N A, Donnelly P. Association mapping in structured populations. Am J Hum Genet, 2000, 67: 170-181

[24] Beer S C, Siripoonwiwat W, O’donoughue L S, Souza E, Matthews D, Sorrels M E. Associations between molecular markers and quantitative traits in an oat germplasm pool: can we infer linkages? J Agric Genomics, 1997, 3: 197

[25] Virk P S, Fordlloyd B V, Jackson M T, Pooni H S, Clemeno T P, Newbury H J. Predicting quantitative variation within rice germplasm using molecular markers. Heredity, 1996, 76: 96-304

[26] Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler IV E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286-289

[27] Wilson L M, Whitt S R, Ibanez A M, Rochefor T R, Goodman M M, Buckler IV E S. Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell, 2004, 16: 2719-2733

[28] Szalma S J, Buckler IV E S, Snook M E, McMullen M D. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silk. Theor Appl Genet, 2005, 110: 1324-1333

[29] Yu J M, Holland J B, McMullen M D, Buckler E S. Genetic design and statistical power of nested association mapping in maize. Genetics, 2008, 178: 539-551
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[3] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[4] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[5] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[6] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[7] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[8] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[9] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[10] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[11] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[12] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[13] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!