欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (07): 1126-1134.doi: 10.3724/SP.J.1006.2010.01126

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

28个小麦微核心种质抗叶锈性分析

丁艳红1,刘欢1,师丽红1,温晓蕾2,张娜1,杨文香1,*,刘大群1,*   

  1. 1河北农业大学植物病理学系/河北省农作物病虫害生物防治工程技术研究中心/国家北方山区农业工程技术研究中心,河北保定071001;2河北科技师范学院,河北秦皇岛066600
  • 收稿日期:2010-03-05 修回日期:2010-04-22 出版日期:2010-07-12 网络出版日期:2010-05-20
  • 通讯作者: 杨文香, E-mail: wenxiangyang2003@163.com; 刘大群, E-mail: ldq@hebau.edu.cn
  • 基金资助:

    本研究由国家"十一五"支撑计划项目(2006BAD08A05)和国家公益性行业(农业)科研专项项目(200903035)资助.

Wheat Leaf Rust Resistance in 28 Chinese Wheat Mini-Core Collections

DING Yan-Hong1,LIU Huan1,SHI Li-Hong1,WEN Xiao-Lei2,ZHANG Na1,YANG Wen-Xiang1,LIU Da-Qun1   

  1. 1Department of Plant Pathology,Agricultural University of Hebei/Biological Control Center of Plant diseases and Plant Pests of Hebei Province/National engineering Research Center for Agriculture in Northern Mountainous Areas,Baoding 071001,China;2Hebei Normal University of Science & Technology,Qinhuangdao 066600,China
  • Received:2010-03-05 Revised:2010-04-22 Published:2010-07-12 Published online:2010-05-20

摘要:

选取在成株期表现高、中、低抗叶锈的28个小麦微核心种质,利用39个以Thatcher为背景的近等基因系(或单基因系)作为已知基因的鉴别寄主,接种8个小麦叶锈菌致病型进行苗期抗叶锈基因推导,结合成株期抗病鉴定,初步明确了这些品种(系)的抗性和可能携带的抗病基因。利用19个与Lr基因紧密连锁或共分离的分子标记,对28个微核心种质进行抗叶锈病基因的进一步鉴定,推测新克旱9号可能含有Lr17Lr2bLr14aLr33;兴义4号可能含有Lr26Lr36Lr37;紫皮可能含有Lr2bLr34;大白皮含有Lr1;毕红穗含有Lr1Lr10Lr34;中优9507含有Lr10;小白麦、红粒当年老、老麦、蝉不吱、苏麦3号和车锏子含有Lr1Lr34;红花早可能含有Lr1Lr34Lr14aLr2b;江西早、泡子麦、三月黄、有芒扫谷旦、阜阳红、成都光头和酱麦可能含有Lr34;敦化春麦和甘肃96可能含有Lr28;欧柔可能含有Lr34Lr16Lr11Lr3bgLr33;此外,新克旱9号、兴义4号、红花早、红粒当年老、欧柔、有芒扫谷旦、成都光头、甘肃96、小红皮、定兴寨、中优9507和红冬麦中可能含有未知抗病基因;在这28份种质中,不含Lr9Lr19Lr20Lr21Lr24Lr29Lr35Lr38Lr47基因。研究结果表明,测试的微核心种质中含有比较丰富的抗叶锈病基因,可为育种提供丰富的抗源。

关键词: 抗叶锈病基因, 基因推导, 成株期抗性, 分子标记辅助选择, 小麦微核心种质

Abstract:

Leaf rust of wheat caused by Puccinia triticina Erikss is an important wheat disease worldwide. Application of resistant cultivars is considered as the most economical, environment-friendly, and effective way to control this disease. Wheat (Triticum aestivum L.) core collections act as an important germplasm resource for resistance breeding to leaf rust in China. To evaluate the leaf rust resistance of Chinese wheat mini-core collections, we chose 28 accessions with a wide range of leaf rust reaction (R, SR, MS and S) were chosen for resistance identification in seedling and adult stages and gene postulation. Thirty-nine near isogenic lines (or single gene lines) in Thatcher background with known leaf rust resistance genes were used as differential hosts. All genotypes were inoculated with eight pathotypes of P. triticina at seedling stage. The results indicated that Lr2b, Lr3bg, Lr10, Lr11, Lr14a, Lr16, Lr17, Lr20, Lr33, and some unknown resistance genes might exist. As revealed by 19 molecular markers that are closely linked or co-segregated with part of the known Lr genes, the 28 accessions from wheat mini-core collections were postulated to carry thirteen resistance genes, such as Lr17, Lr2b, Lr14a, Lr33 in Xinkehan 9; Lr26, Lr36, and Lr37 in Xingyi 4; Lr2b and Lr34 in Zipi; Lr1 in Dabaipi; Lr1, Lr10, and Lr34 in Bihongsui; Lr10 in Zhongyou 9507; Lr1 and Lr34 in Xiaobaimai, Hongli Dangnianlao, Laomai, Chanbuzhi, Sumai 3, and Chejianzi; Lr1, Lr34, Lr14a, and Lr2binHonghuazao; Lr34 in Jiangxizao, Paozimai, Sanyuehuang, Youmang Saogudan, Fuyanghong, Chengdu Guangtou and Jiangmai; Lr28 in Dunhua Chunmai and Gansu 96; Lr34, Lr16, Lr11, Lr3bg and Lr33 in Orofen; Besides, Xinkehan 9, Xingyi 4, Honghuazao, Hongli Dangnianlao, Orofen, Youmang Saogudan, Chengdu Guangtou, Gansu 96, Xiaohongpi, Dingxingzhai, Zhongyou 9507, and Hongdongmai may carry un-known resistance genes to leaf rust. However,the specific bands for Lr9, Lr19, Lr20, Lr21, Lr24, Lr29, Lr35, Lr38,and Lr47 were not amplified with the corresponding primers in the 28 accessions. This indicated that Lr9, Lr19, Lr20, Lr21, Lr24, Lr29, Lr35, Lr38,and Lr47 were not present in the 28 accessions. The occurrence degree of leaf rust at adult stage showed that 17 of 28 tested materials may carry slow rusting resistance genes and adult resistance genes. The results also showed that the resistance genes in response to leaf rust disease is relatively richer in the 28 Chinese wheat mini-core collections, and the Chinese wheat mini-core collections can be applied in breeding programs of leaf rust resistance.

Key words: Resistance gene to wheat leaf rust, Gene postulation, Adult resistance, Molecular marker-assisted selection, What mini-core collection

[1] Kolmer J A. Genetics of resistance to wheat leaf rust. Annu Rev Phytopathol, 1996, 34: 435–455

[2] Qiu J W, Schürch A C, Yahiaoui N, Dong L L, Fan H J, Zhang Z J, Keller B, Ling H Q. Physical mapping and identification of a candidate for the leaf rust resistance gene Lr1 of wheat. Theor Appl Genet, 2007, 115: 159–168

[3] Gupta S K, Charpe A, Koul S, Prabhu K V, Haq Q M R. Development and validation of molecular markers linked to an Aegilops umbellulata-derived leaf-rust-resistance gene, Lr9, for marker-assisted selection in bread wheat. Genome, 2005, 48: 823–830

[4] Schachermayr G, Siedler H, Gale M D, Winzeler H, Winzeler M, Keller B. Identification and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat. Theor Appl Genet, 1994, 88: 110–115

[5] Schachermayr G, Feuillet C, Keller B. Molecular markers for the detection of the wheat leaf rust resistance gene Lr10 in diverse genetic backgrounds. Mol Breed, 1997, 3: 65–74

[6] Gupta S K, Charpe A, Prabhu K V, Haq Q M R. Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theor Appl Genet, 2006, 113: 1027–1036

[7] Neu C, Stein N, Keller B. Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome, 2002, 45: 737–744

[8] Huang L, Gill B S. An RGA-like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat. Theor Appl Genet, 2001, 103: 1007–1013

[9] Schachermayr G M, Messmer M M, Feuillet C, Winzeler H, Winzeler M, Keller B. Identification of molecular markers linked to the Agropyron elongatum-derived leaf rust resistance gene Lr24 in wheat. Theor Appl Genet, 1995, 90: 982–990

[10] Gupta S K, Charpe A, Koul S, Haque Q M R, Prabhu K V. Development and validation of SCAR markers co-segregating with an Agropyron elongatum derived leaf rust resistance gene Lr24 in wheat. Euphytica, 2006, 150: 233–240

[11] Chai J F, Zhou R H, Jia J Z, Liu X. Development and application of a new co-dominant PCR marker for detecting 1BL·1RS wheat-rye chromosome translocations. Plant Breed, 2006, 125: 302–304

[12] Froidmont D D. A co-dominant marker for the 1BL·1RS wheat-rye translocation via multiplex PCR. J Cereal Sci, 1998, 27: 229–232

[13] Cherukuri D P, Gupta S K, Charpe A, Koul S, Prabhu K V, Singh R B, Haq Q M R. Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat. Euphytica, 2005, 143: 19–26

[14] Tar M, Purnhauser L, Csösz L, Mesterházy ákos, Gyulai Gábor. Identification of molecular markers for an efficient leaf rust resistance gene (Lr29) in wheat. Acta Biol Szegediensis. 2002, 46: 133–134

[15] Lagudah E S, Mcfadden H, Singh R P, Huerta-Espino J, Bariana H S, Spielmeyer W. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet, 2006, 114: 21–30

[16]Lagudah E S,Krattinger S G, Herrera-Foessel S, Singh R. P, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter L L, Keller B. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet, 2009, 119: 889–898

[17] Gold J, Harder D, Townley-Smith F, Aung T, Procunier J. Development of a molecular marker for rust resistance genes Sr39 and Lr35 in wheat breeding lines. Electron J Biotechnol, 1999, 2(1), DOI: 10.2225/vol2-issue1-fulltext-1

[18] Helguera M, Khan I A, Kolmer J, Lijavetzky D, Zhong-Qi L, Dubcovsky J. PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci, 2003, 43: 1839–1847

[19] Yan H-F(闫红飞), Yang W-X(杨文香), Chu D(褚栋), Liu D-Q(刘大群). A new marker tagged to the leaf rust resistance gene Lr38. Sci Agric Sin (中国农业科学), 2008, 41(11): 3604–3609 (in Chinese with English abstract)

[20] Helguera M, Khan I A, Dubcovsky J. Development of PCR markers for the wheat leaf rust resistance gene Lr47. Theor Appl Genet, 2000, 100: 1137-1143

[21] Wei X-Y(魏新燕), Yang W-X (杨文香), Liu D-Q(刘大群), Kong J-Y(孔俊英). MAS for leaf rust resistance gene Lr35 in 150 wheat cultivars. Sci Agric Sin (中国农业科学), 2004, 37(12): 1951–1954 (in Chinese with English abstract)

[22] Lukasz S, Lidia G, Jerzy C. Leaf rust resistance genes of wheat: identification in cultivars and resistance sources. J Appl Genet, 2003, 44: 139-149

[23] Singh R, Datta D, Priyamvada, Singh S, Tiwari R.Marker-assisted selection for leaf rust resistance genes Lr19 and Lr24 in wheat (Triticum aestivum L.). J Appl Genet, 2004, 45: 399–403

[24] Tyryshkin L G, Gul’tyaeva E I, Alpat’eva N V, Kramer I. Identification of effective leaf-rust resistance genes in wheat (Triticum aestivum) using STS markers. Russ J Genet, 2006, 42: 662–666

[25] Hao C-Y(郝晨阳), Dong Y-C(董玉琛), Wang L-F(王兰芬), You G-X (游光霞), Zhang H-N(张洪娜), Ge H-M(盖红梅), Jia J-Z(贾继增), Zhang X-Y(张学勇). Establishment of core collections in Chinese common wheat and analysis of genetic diversity. Chin Sci Bull (科学通报), 2008, 53(8): 908–915 (in Chinese)

[26] Yang W-X(杨文雄), Yang F-P(杨芳萍), Liang D(梁丹), He Z-H(何中虎), Shang X-W(尚勋武), Xia X-C(夏先春). Molecular characterization of slow-rusting genes Lr34/Yr18 in Chinese wheat cultivars. Acta Agron Sin (作物学报), 2008, 34(7): 1109–1113 (in Chinese with English abstract)

[27] Roelfs A P, Singh R P, Saari E E. Rust Diseases of Wheat: Concepts and Methods of Disease. Mexico: CIMMYT, 1992, pp 7–14

[28] Dubin H J, Johnson. Postulated genes for resistance to strip rust in selected CIMMYT and related wheats. Plant Dis, 1989, 73: 472–475

[29] Liu L(刘莉), Chen Y-F(陈云芳), Liu H-L(刘华梁), Yang W-X(杨文香), Zhang T(张汀), Liu D-Q(刘大群). Verification of STS molecular markers for leaf rust resistance genes Lr24 and Lr35 in near-isogenic lines of wheat cv. Thatcher. Mol Plant Breed (分子植物育种), 2008, 6(3): 471–474 (in Chinese with English abstract)

[30] Vida G, Gál M, Uhrin A, Veisz O, Syed N H, Flavell A J, Wang Z L, Bedö Z. Molecular markers for the identification of resistance genes and marker-assisted selection in breeding wheat for leaf rust resistance. Euphytica, 2009, 170: 67–76

[31] Krattinger S G, Lagudah E S, Spielmeyer W, Singh R P, Huerta-Espino J, McFadden H, Bossolini E, Selter L L, Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323: 1360–1363


[32] Deng W-H(邓万洪). The research on biochemistry character related to noodle quality of Chinese core collections germplasm Resource. MS Thesis of Sichuan Agricultural University, 2007 (in Chinese with English abstract)
[1] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[2] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[3] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[4] 张平,姜一梅,曹鹏辉,张福鳞,伍洪铭,蔡梦颖,刘世家,田云录,江玲,万建民. 通过分子标记辅助选择将耐储藏主效QTL qSS-9 Kas转入宁粳4号提高其种子贮藏能力[J]. 作物学报, 2019, 45(3): 335-343.
[5] 杨勇,陆彦,郭淑青,石仲慧,赵杰,范晓磊,李钱峰,刘巧泉,张昌泉. 籼稻背景下导入Wx in等位基因改良稻米食味和理化品质[J]. 作物学报, 2019, 45(11): 1628-1637.
[6] 张安宁,刘毅,王飞名,谢岳文,孔德艳,聂元元,张分云,毕俊国,余新桥,刘国兰,罗利军. 节水抗旱稻恢复系的抗褐飞虱分子标记辅助选育及抗性评价[J]. 作物学报, 2019, 45(11): 1764-1769.
[7] 田宇,杨蕾,李英慧,邱丽娟. 抗大豆胞囊线虫SCN3-11位点的KASP标记开发和利用[J]. 作物学报, 2018, 44(11): 1600-1611.
[8] 朱展望, 徐登安, 程顺和, 高春保, 夏先春, 郝元峰, 何中虎. 中国小麦品种抗赤霉病基因Fhb1的鉴定与溯源[J]. 作物学报, 2018, 44(04): 473-482.
[9] 张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 杨丽, 李洪杰, 周阳. 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性[J]. 作物学报, 2018, 44(04): 505-511.
[10] 李晓那,孙石,钟超,韩天富. 黄淮海地区大豆主栽品种对8个大豆疫霉菌株的抗性评价[J]. 作物学报, 2017, 43(12): 1774-1783.
[11] 姚姝,陈涛,张亚东,朱镇,赵庆勇,周丽慧,赵凌,赵春芳,王才林. 利用分子标记辅助选择聚合水稻Pi-taPi-bWx-mq基因[J]. 作物学报, 2017, 43(11): 1622-1631.
[12] 童治军,焦芳婵,方敦煌,陈学军,吴兴富,曾建敏,谢贺,张谊寒,肖炳光*. 烟草染色体片段代换系的构建与遗传评价[J]. 作物学报, 2016, 42(11): 1609-1619.
[13] 马建,马小定,赵志超,王帅,王久林,王洁,程治军,雷财林. 水稻抗稻瘟病基因Pi35功能性分子标记的开发及其应用[J]. 作物学报, 2015, 41(12): 1779-1790.
[14] 寇程,高欣,李立群,李扬,王中华,李学军*. 小麦粒重基因TaGW2-6A等位变异的组成分析及育种选择[J]. 作物学报, 2015, 41(11): 1640-1647.
[15] 史学晖,李英慧,于佰双,郭勇,王家军,邱丽娟. 大豆胞囊线虫主效抗病基因Rhg4(GmSHMT)的CAPS/dCAPS标记开发和利用[J]. 作物学报, 2015, 41(10): 1463-1471.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!