欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (12): 1779-1790.doi: 10.3724/SP.J.1006.2015.01779

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

水稻抗稻瘟病基因Pi35功能性分子标记的开发及其应用

马建**,马小定**,赵志超,王帅,王久林,王洁,程治军,雷财林*   

  1. 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程,北京 100081
  • 收稿日期:2015-04-09 修回日期:2015-07-20 出版日期:2015-12-12 网络出版日期:2015-08-28
  • 通讯作者: 雷财林, E-mail: leicailin@caas.cn ** 同等贡献(Contributed equally to this work)
  • 基金资助:

    本研究由国家自然科学基金项目(30871606, 31471758)和国家转基因生物新品种培育重大专项(2014ZX08001)资助。

Development and Application of a Functional Marker of the Blast Resistance Gene Pi35 in Rice

MA Jian**,MA Xiao-Ding**,ZHAO Zhi-Chao,WANG Shuai,WANG Jiu-Lin,WANG Jie,CHENG Zhi-Jun,LEI Cai-Lin*   

  1. National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2015-04-09 Revised:2015-07-20 Published:2015-12-12 Published online:2015-08-28
  • Contact: 雷财林, E-mail: leicailin@caas.cn ** 同等贡献(Contributed equally to this work)
  • Supported by:

    This research was supported by the National Natural Science Foundation of China (30871606, 31471758) and the Major Project of China on New Varieties of GMO Cultivation (2014ZX08001).

摘要:

稻瘟病是水稻生产上的严重病害,利用抗病基因培育抗病品种是控制稻瘟病最经济而有效的措施。在日本,稻瘟病部分抗性基因Pi35作为广谱持久抗性基因已广泛应用于水稻育种和稻瘟病防治实践。但是,Pi35基因在我国的资源和品种中的分布情况不清,制约了这一重要基因在我国育种实践中的应用,急需开发实用的分子标记,并系统研究该基因在我国的品种及其亲本中的分布情况,为稻瘟病抗性育种服务。本研究通过比对抗、感品种中Pi35等位基因序列,发现一个能检测抗、感病性差异的特异SNP(3780 T),并据此开发了Pi35基因的功能性分子标记Pi35-dCAPS。利用该标记检测了抗源藤系138的衍生品种10份、微核心种质204份和主栽品种67份,结合测序鉴定,确认5份藤系138衍生品种(垦鉴稻3号、垦鉴稻6号、垦稻8号、绥粳3号和龙粳34)2份微核心种质(粳稻品种抚宁紫皮粳子和籼稻品种细麻线)携带Pi35基因。本研究结果为通过分子育种手段高效利用Pi35基因改良我国水稻(特别是籼稻)品种的稻瘟病抗性提供了手段。

关键词: 水稻, 稻瘟病, 部分抗性基因, 功能性标记, 分子标记辅助选择

Abstract:

Rice blast is one of the most destructive diseases, and breeding resistant cultivars is considered to be the most economical and effective strategy to control this disease. The Pi35 gene shows partial resistance to leaf blast and has been used as a broad-spectrum and durable resistance source in rice breeding programs in Japan. However, its distribution is not clear in Chinese rice germplasm and cultivars. For the purpose to facilitate the application of Pi35 in rice breeding programs in China, we compared the coding sequences of Pi35 alleles in multiple resistant and susceptible rice cultivars, found a specific nucleotide 3780T which was only present in the functional resistance allele of Pi35, and further developed a Pi35 functional marker (Pi35-dCAPS). Among 281 rice accessions including 10 Fukei 138-derived japonica cultivars, 67 leading cultivars, and 204 accessions of rice mini-core collection of Chinese germplasm, five Fukei 138-derived cultivars (Kenjiandao 3, Kenjiandao 6, Kendao 8, Suijing 3, and Longjing 34) and two mini-core accessions (japonica cv. Funingzipijingzi and indica cv. Ximaxian) were detected to possess the intact Pi35 gene by using the Pi35-dCAPS marker in combination with the genomic sequencing of Pi35. These results will greatly facilitate the utilization of Pi35 in rice breeding programs by marker-assisted selection.

Key words: Rice, Blast disease, Partial resistance gene, Functional marker, Marker-assisted selection

[1]Ou S H. Blast. In: Rice Diseases, 2nd edn. The Cambrian News Ltd, UK. 1985. pp 109–201



[2]雷财林, 凌忠专, 王久林. 水稻抗病育种研究进展. 生物学通报, 2004, 39: 4–7



Lei C L, Ling Z Z, Wang J L. Research advances in rice breeding for disease resistance. Bull Biol, 2004, 39: 4–7 (in Chinese)



[3]Ezuka A. Field resistance of rice varieties to rice blast disease. Rev Plant Prot Res, 1972, 5: 1–21



[4]Kiyosawa A S. Genetic and epidemiological modeling of breakdown of plant disease resistance. Annu Rev Phytopathol, 1982, 20: 93–117



[5]Mackill D J, Bonman J M. Inheritance of blast resistance in near-isogenic lines of rice. Phytopathol, 1992, 82: 746–749



[6]Nguyen T T T, Koizumi S, La T N, Zenbayashi K S, Ashizawa T, Yasuda N, Imazaki I, Miyasaka A. Pi35(t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188. Theor Appl Genet, 2006, 113: 697–704



[7]Fukuoka S, Yamamoto S, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Nguyen T T T, Koizumi S, Sugimoto K, Matsumoto T, Yano M. Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast. Sci Rep, 2014, 4: 4550



[8]Young N D. QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol, 1996, 34: 479–501



[9]Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009, 325: 998–1001



[10]Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J, 2010, 64: 498–510



[11]Ma J, Jia M H, Jia Y L. Characterization of rice blast resistance gene Pi61(t) in rice germplasm. Plant Dis, 2014, 98: 1200–1204



[12]Xu X, Hayashi N, Wang C T, Fukuota S, Kawasaki S, Takatsuji H, Jiang C J. Rice blast resistance gene Pikahei-1(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein. Mol Breed, 2014, 34: 691–700



[13]刘洋, 徐培洲, 张红宇, 徐建第, 吴发强, 吴先军. 水稻抗稻瘟病Pib基因的分子标记辅助选择与应用. 中国农业科学, 2008, 41: 9–14



Liu Y, Xu P Z, Zhang H Y, Xu J D, Wu F Q, Wu X J. Marker-assisted selection and application of blast resistant gene Pib in rice. Sci Agric Sin, 2008, 41: 9–14 (in Chinese with English abstract)



[14]Jia Y L, Wang Z H, Singh P. Development of dominant rice blast Pita resistance gene markers. Crop Sci, 2002, 46: 2145–2149



[15]Zhai C, Lin F, Dong Z Q, He X Y, Yuan B, Zeng X S, Wang L, Pan Q H. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol, 2011, 189: 321–334



[16]Yuan B, Zhai C, Wang W J, Zeng X S, Xu X K, Hu H Q, Lin F, Wang L, Pan Q H. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet, 2011, 122: 1017–1028



[17]Hua L X, Wu J Z, Chen C X, Wu W H, He X Y, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q H. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet, 2012, 125: 1047–1055



[18]Hayashi K, Yasuda N, Fujita Y, Koizumi S, Yoshida H. Identification of the blast resistance gene Pit in rice cultivars using functional markers. Thero Appl Genet, 2010, 121: 1357–1367



[19]Yi G, Lee S K, Hong Y K, Cho Y C, Nam M H, Kim S C, Han S S , Wang G L, Hahn T R, Ronald P C, Jeon J S. Use of Pi5(t) markers in marker-assisted selection to screen for cultivars with resistance to Magnaporthe grisea. Theor Appl Genet, 2004, 109: 978–985



[20]Wang H M, Chen J, Shi Y F, Pan G, Shen H C, Wu J L. Development and validation of CAPS markers for marker-assisted selection of rice blast resistance gene Pi25. Acta Agron Sin, 2012, 38: 1960–1968



[21]Ramkumar G, Srinivasarao K, Madhan Mohan K, Sudarshan I, Sivaranjani A K P, Gopalakrishna K, Neeraja C N, Balachandran S M, Sundaram R M, Prasad M S, Shobha Rani N, Rama Prasad A M, Viraktamath B C, Madhav M S. Development and validation of functional marker targeting an InDel in the major rice blast disease resistance gene Pi54 (Pikh). Mol Breed, 2011, 27: 129–135



[22]Ma J, Lei C L, Xu X T, Hao K, Wang J L, Cheng Z J, Ma X D, Ma J, Zhou K N, Zhang X, Guo X P, Wu F Q, Lin Q B, Wang C M, Zhai H Q, Wang H Y, Wan J M. Pi64, encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice. Mol Plant-Microbe Interact, 2015, http://dx.doi.org/10.1094/MPMI-11-14-0367-R



[23]Mikami T, Kawamura Y, Horisue N. Estimation of resistant genes and field resistance to leaf blast of a rice cultivar ‘Fukei 138’. Rep Tohoku Br, Crop Sci Soc Japan, 1990, 33: 87–88 (in Japanese) 



[24]孙淑红. 日本优异种质资源藤系138的利用和评价. 黑龙江农业科学, 2011, (5): 4–6



Sun S H. Evaluation and utilization of Japanese excellent germplasm resources Tengxi 138. Heilongjiang Agric Sci, 2011, (5): 4–6 (in Chinese with English abstract)



[25]Ling Z Z, Mew T V, Wang J L, Lei C L, Hang N. Development of Chinese near-isogenic lines of rice and their differentiating ability of pathogenic races of blast fungus. Chin Agric Sci, 2001, 1: 50-56



[26]Yoshida S, Forno D A, Cock J H. Laboratory Manual for Physiological Studies of Rice, 2nd edn. Philippines: The International Rice Research Institute, 1971. pp 57–63



[27]雷财林, 张国民, 程治军, 马军滔, 王久林, 辛爱华, 陈平, 肖家雷, 张欣, 刘迎雪, 郭秀平, 王洁, 翟虎渠, 万建民. 黑龙江省稻瘟病菌生理小种毒力基因分析与抗病育种策略. 作物学报, 2011, 37: 18–27



Lei C L,Zhang G M, Cheng Z J, Ma J T, Wang J L, Xin A H, Chen P, Xiao J L , Zhang X, Liu Y X, Guo X P, Wang J, Zhai H Q, Wan J M. Pathogenic races and virulence gene structure of Magnaporthe oryzae population and rice breeding strategy for blast resistance in Heilongjiang Province. Acta Agron Sin, 2011, 37: 18–27(in Chinese with English abstract)



[28]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acid Res, 1980, 8: 4321–4325



[29]Takahashi A, Hayashi N, Miyao A, Hirochika H. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol, 2010, 10: 175



[30]Kobayashi N, Telebanco-Yanoria M J, Tsunematsu H, Kato H, Imbe T, Fukuta Y. Development of new sets of international standard differential varieties for blast resistance in rice (Oryza sativa L.). Jpn Agric Res Q, 2007, 41: 31–37



[31]Lei C L, Hao K, Yang Y L, Ma J, Wang S, Wang J L, Cheng Z J, Zhao S S, Zhang X, Guo X P, Wang C M, Wan J M. Identification and fine mapping of two blast resistance genes in rice cultivar 93-11. Crop J, 2013, 1: 2–14



[32]Okutsu Y, Koga M, Ishihara M, Suga R. Inheritance of blast-resistance of upland rice varieties. Part 4. Improvement of blast resistance by combining of polygenes responsible for blast field resistance. Bull Ibaraki Agric Exp Stn, 1984, 24: 17-24



[33]杨一龙, 程治军, 李伟, 马建, 马进, 王久林, 雷财林. 水稻稻瘟病部分抗性基因的定位与克隆研究进展. 作物杂志, 2010, (6): 10–14



Yang Y L, Cheng Z J, Li W, Ma J, Ma J, Wang J L, Lei C L. Advances in molecular mapping and cloning of partial blast resistance genes in rice. Crops, 2010, (6): 10–14 (in Chinese with English abstract)



[34]Fukuoka S, Norikuni S, Mizukami Y, Koga H, Yamanouchi U, Yoshioda Y, Hayashi N, Ebana K, Mizobuchi R, Yano M. Gene pyramiding enhances durable blast disease resistance in rice. Sci Rep, 2015, 5: 7773



[35]Ashkani S, Rafii M Y, Rahim H A, Latif M A. Mapping of the quantitative trait locus (QTL) conferring partial resistance to rice leaf blast disease. Biotechnol Lett, 2013, 35: 799–810



[36]Mizobuchi R, Sato H, Fukuoka S, Yamamoto S, Kawasaki-tanaka A, Fukuta Y. Mapping of a QTL for field resistance to blast (Pyricularia oryzae Cavara) in ingngoppor-tinawon, a rice (Oryza sativa L.) landrace from the Philippines. Jpn Agric Res Q, 2014, 4: 425–431



[37]Ballini E, Morel J B, Droc G, Price A, Courtois B, Notteghem J L, Tharreaul D. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant-Microbe Interact, 2008, 21: 859–868

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!