欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (09): 1457-1467.doi: 10.3724/SP.J.1006.2010.01457

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于元分析和生物信息学分析的玉米抗旱相关性状QTL一致性区间定位

栗文娟1,2,刘志斋2,3,石云素2,宋燕春2,王天宇2,*,徐辰武1,*,黎裕2   

  1. 1扬州大学江苏省作物遗传生理重点实验室,江苏扬州225009;2中国农业科学院作物科学研究所,北京 100081;3西南大学农学院,重庆400716
  • 收稿日期:2010-01-15 修回日期:2010-04-20 出版日期:2010-09-12 网络出版日期:2010-07-05
  • 通讯作者: 王天宇, E-mail: wangtianyu@263.net; 徐辰武, E-mail: qtls@yzu.edu.cn
  • 基金资助:

     本研究由国家重点基础研究发展计划(973计划)项目(2006CB101700), 国家高技术研究发展计划(863计划)项目(2006AA10Z188)和国家自然科学基金项目(30730063, 30971846)资助。

Detection of Consensus Genomic Region of QTLs Relevant to Drought-Tolerance in Maize by QTL Meta-Analysis and Bioinformatics Approach

 LI Wen-Juan1,2,LIU Zhi-Zhai2,3,SHI Yun-Su2,SONG Yan-Chun2,WANG Tian-Yu2*,XU Chen-Wu1*,LI Yu2   

  1. 1 Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3Southwest University, Chongqing 400716, China
  • Received:2010-01-15 Revised:2010-04-20 Published:2010-09-12 Published online:2010-07-05
  • Contact: WANG Tian-Yu,E-mail:wangtianyu@263.net; 徐辰武, E-mail: qtls@yzu.edu.cn

摘要: 定位玉米基因组中一致的抗旱性区段是玉米抗旱分子育种的重要基础。本研究对至今发表的在干旱条件下定位的相关性状QTL信息搜集整理,以IBM2 2008 Neighbors为参考图谱,利用overview分析和元分析方法进行Meta-QTL (MQTL)检测,共发掘79个MQTL,生物信息学分析结果显示,有43个区间内包含抗旱相关基因信息,占检出MQTL总数的54.43%。基于MaizeGDB网站的Genome Browser中的遗传图谱与物理图谱的整合信息,进行MQTL物理距离的估算,根据maizesequence网站的玉米基因组序列信息,进行初步的抗旱基因预测表明,这些区段中包含丰富的MYB、bZIP以及DREB转录因子序列信息以及大量的LEA基因家族成员。

关键词: 玉米, 抗旱性, “一致性”QTL, 元分析, 生物信息学方法

Abstract: Mapping consensus genomic regions for drought-tolerance is of great importance in the molecular breeding of maize. The present research integrated informations of the published QTLs relevant to drought-tolerance mapped in the environment of water stress. On the basis of the high-density linkage map of IBM2 2008 Neighbors, a total of 79 Meta-QTLs (MQTLs) were screened out through the methods of “overview” and meta-analysis, and the bioinformatic analysis indicated that 43 of these MQTLs (54.43%) contained the information of genes conferring drought tolerance. By integrating the genetic map and the physical map of maize via Genome Brower in maize genome database (http://www.maizegdb.org/), we estimated the physical map distance of MQTLs and analyzed the function of these candidate drought tolerance-related genomic regions based on the maize genome sequence information from the maize sequence database (http://www.maizesequence.org/). The results showed that these regions contained abundant sequences of transcription factors of MYB, bZIP and DREB, and a number of functional genes of LEA family.

Key words: Maize(Zea mays L.), Drought tolerance, Meta-QTL, Meta-analysis, Bioinformatics approach

[1] Li Y(黎裕), Wang T-Y(王天宇), Shi Y-S(石云素), Song Y-C(宋艳春). Advances and prospects on QTL analysis of drought tolerance of maize (Zea mays L.). Agric Res Arid Areas (干旱地区农业研究), 2004, 22(1): 32-39 (in Chinese with English abstract)
[2] Li X-H(李雪华), Li X-H(李新海), Hao Z-F(郝转芳), Tian Q-Z(田清震), Zhang S-H(张世煌). Consensus map of the QTL relevant to drought tolerance of maize under drought conditions. Sci Agric Sin (中国农业科学), 2005, 38(5): 882-890 (in Chinese with English abstract)
[3] Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics, 2004, 168: 2169-2185
[4] Hanocq E, Laperche A, Jaminon O, Laine AL, Le Gouis J. Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet, 2007, 114: 569-584
[5] Ji H-L(吉海莲), Li X-H(李新海), Xie C-X(谢传晓), Hao Z-F(郝转芳), Lü X-L(吕香玲), Shi L-Y(史利玉), Zhang S-H(张世煌). Comparative QTL mapping of resistance to sporisorium reiliana in maize based on meta-analysis of QTL locations. J Plant Genet Resour (植物遗传资源学报), 2007, 8(2): 132-139 (in Chinese with English abstract)
[6] Wang Y(王毅), Yao J(姚骥), Zhang Z-F(张征锋), Zheng Y-L(郑用琏). Comparative analysis of QTL integrated mapping and statistical analysis of QTLs affecting plant height in maize. Chin Sci Bull (科学通报), 2006, 51(15): 1776-1786 (in Chinese)
[7] Xu D P, Duan X L, Wang B Y, Hong B M, David Ho T H, Wu R. Expression of a late embryogenesis abundant protein gene, HVA1, from Barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 1996, 110: 249-257
[8] Liang Z(梁峥), Ma D-Q(马德钦), Tang L(汤岚), Hang Y-G(洪益国), Luo A-L(骆爱玲), Dai X-Y(戴秀玉). Expression of the Spinach Betaine Aldehyde Dehydrogenase (BADH) gene in transgenic tobacco plants. Chin J Biotech (生物工程学报), 1997, 13(3): 236-240 (in Chinese with English abstract)
[9] Schnable P S, Ware D, Fulton R S, Stein J C, Wei F S, Pasternak S, Liang C Z, Zhang J W, Fulton L, Graves T A, Minx P, Reily A D, Courtney,L, Kruchowski S S, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock S M, Belter E, Du F Y, Kim K, Abbott R M, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson S M, Gillam B, Chen W Z, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R F, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H R, Lee S, Lin J, ujmic Z, Kim W, Talag J, Zuccolo A, Fan C Z, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy M J, McMahan L, Buren P V, Vaughn M W, Ying K, Yeh C T, Emrich S J, Jia Y, Kalyanaraman A, Hsia A P, Barbazuk W B, Baucom R S, Brutnell T P, Carpita N C, Chaparro C, Chia J M, Deragon J M, Estill J C, Fu Yan, Jeddeloh J A, Han Y J, Lee H, Li P H, Lisch D R, Liu S Z, Liu Z J, Nagel D H, McCann M C, SanMiguel P, Myers A M, Nettleton D, Nguyen J, Penning B W, Ponnala L, Schneider K L, Schwartz D C, Sharma A, Soderlund C, Springer N M, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber T K, Yang LX, Yu Y, Zhang L F, Zhou S G, Zhu Q H, Bennetzen J L, Dawe R K, Jiang J M, Jiang N, Presting G G, Wessler S R, Aluru S, Martienssen R A, Clifton S W, McCombie W R, Wing R A, Wilson R K. The B73 maize genome: complexity, diversity, and dynamics. Science, 2009, 326: 1112-1115
[10] Darvasi A, Soller M. A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet, 1997, 27(2): 125-132
[11] Lee M, Beavis W D, Grant D, Katt M, Blair D, Hallauer A. Expanding the genetic map of maize with the intermated B73 × Mo17 (IBM) population. Plant Mol Biol, 2002. 48: 453-461
[12] Sharopova N, McMullen M D, Schultz L, Schroeder S, Sanchez-Villeda H, Gardiner J, Bergstrom D, Houchins K, Hancock S M, Musket T, Duru N, Polacco M, Edwards K, Ruff T, Register J C, Brouwer C, Thompson R, Velasco R, Chin E, Lee M, Woodman-Clikeman W, Long M J, Liscum E, Cone K, Davis G, Coe E H. Development and mapping of SSR markers for maize. Plant Mol Biol, 2002, 48: 463-481
[13] Veyrieras J B, Goffinet B, Charcosset A. MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics, 2007, 8: 49
[14] Goffinet B, G.erber S. Quantitative Trait Loci: A Meta-analysis. Genetics, 2000, 155: 463-473
[15] Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J. BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics, 2004, 20: 2324-2326
[16] Sen T Z, Andorf C M, Schaeffer M L, Harper L C, Sparks M E, Duvick J, Brendel V P, Cannon E, Campbell D A, Lawrence C J. MaizeGDB becomes ‘sequence-centric’. Database, 2009: bap020
[17] Beavis WD, Smith OS, Grant D, Fincher R. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci, 1994, 34: 882-896
[18] Veldboom L R, Lee M, Woodman W L. Molecular marker-facilitated studies in an elite maize population: I. Linkage analysis and determination of QTL for morphological traits. Theor Appl Genet, 1994, 88: 7-16
[19] Ajmone-Marsan P, Monfredini G, Ludwig W F, Melchinger A E, Franceschini P, Pagnotto G, Motto M. In an elite cross of maize a major quantitative trait locus contols one-fourth of the genetic variation for grain yield. Theor Appl Genet, 1995, 90: 415-424
[20] Agrama H A S, Moussa M E. Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica, 1996, 91: 89-97
[21] Ajmone-Marsan P, Monfredini G, Brandolini A, Melchinger A E, Garay G, Motto M. Identification of QTL of grain yield in an elite hybrid of maize: repeatability of map position and effects in independent samples derived from the same population. Maydica, 1996, 41: 49-57
[22] Ribaut J M, Hoisington D A, Deutsch J A, Jiang C, Gonzalez-de-Leo D. Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interva. Theor Appl Genet, 1996, 92: 905-914
[23] Veldboom LR, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: I. grain yield components. Crop Sci, 1996, 36: 1310-1319
[24] Ribaut J M, Jiang C, Gonzalez-de-Leon D, Edmeades G O, Hoisington D A. Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet, 1997, 94: 887-896
[25] Austin D, Lee M. Detection of quantitative trait loci for grain yield components in maize across generations in stress and nonstress environments. Crop Sci, 1998, 38: 1296-1308
[26] Khairallah M, Bohn M, Jiang C Z, Deutsh J A, Jewell D C, Mihm J A, Melchinger A E, Gonzalez de Leon D, Hoisington D. Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed, 1998, 117: 309-318
[27] Frova C, Krajewski P, di Fonzo N, Villa M, Sari-Gorla M. Genetic analysis of drought tolerance in maize by molecular markers I. Yield components. Theor Appl Genet, 1999, 99: 280-288
[28] Sari-Gorla M, Krajewski P, di Fonzo N, Villa M, Frova C. Genetic analysis of drought tolerance in maize by molecular markers.II. Plant height and flowering. Theor Appl Genet, 1999, 99: 289-295
[29] Li X H, Liu X D, Li M S, Zhang S H. Identification of quantitative trait loci for anthesis-silking interval and yield components under drought stress in maize. Acta Bot Sin, 2003, 45(7): 852-857
[30] Gao S-B(高世斌), Feng Z-L(冯质雷), Li W-C(李晚忱), Rong T-Z(荣廷昭). Mapping QTLs for root and yield under drought stress in maize. Acta Agron Sin (作物学报), 2005, 31(6): 718-722 (in Chinese with English abstract)
[31] Gao S-B(高世斌), Zhao M-J(赵茂俊), Pan G-T(潘光堂), Li W-C(李晚忱), Rong T-Z(荣廷昭). Identification of QTLs controlling flowering parameters of maize under drought stress and non-stress environment. Southwest China J Agric Sci (西南农业学报), 2005, 18(5): 593-597 (in Chinese with English abstract)
[32] Lu G H, Tang J H, Yan J B, Ma X Q, Li J S, Chen S J, Ma J C, E L Z, Zhang Y R, Dai J R. Quantitative trait loci mapping of maize yield and its components under different water treatments at flowering time. J Integr Plant Biol, 2006, 48(10): 1233-1243
[33] Wu J-W(吴建伟), Liu C(刘成), Shi Y-S(石云素), Song Y-C(宋燕春), Chi S-M(池书敏), Ma S-Y(马峙英), Wang T-Y(王天宇), Li Y(黎裕). QTL analysis of flowering related traits in maize under different water regions. J Maize Sci (玉米科学), 2008, 16(5): 61-65 (in Chinese with English abstract)
[34] Wei F S, Zhang J W, Zhou S G, He R F, Schaeffer M, Collura K, Kudrna D, Faga B P, Wissotski M, Rock S M, Graves T A, Fulton R S, Coe E, Schnable P S, Schwartz D C, Ware D, Clifton S W, Wilson R K, Wing R A. The physical and genetic framework of the maize B73 genome. PLos Genet, 2009, 5(11): e1000715
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[15] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!