欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (10): 1791-1795.doi: 10.3724/SP.J.1006.2010.01791

• 研究简报 • 上一篇    下一篇

水稻多基因型和单基因型品种抗病性及群体内稻瘟菌遗传多样性初析

唐志明1,2,金晓春3,**,李晓方1,4,*,刘彦卓1,刘志霞1,卢东柏1,毛兴学1,高云1,卢德城1   

  1. 1广东省农业科学院裟研究所/广东省育种新技术重点实验室,广东广州510640;2湖南农业大学,湖南长沙410128;3潜江市农业科学研究所,湖北潜江433100;4长江大学,湖北荆州434025
  • 收稿日期:2010-06-02 修回日期:2010-06-16 出版日期:2010-10-12 网络出版日期:2010-08-04
  • 通讯作者: 李晓方, E-mail: lixiaofang@163.net
  • 基金资助:
    本研究由广东省自然科学基金重点项目(06200585)和引进国际先进农业科学技术计划(948计划)项目(2006-G1)资助。

Preliminary Analysis on Rice Blast Disease and Genetic Diversity of Its Pathogen in Multi-Genotype and Mono-Genotype Varieties

TANG Zhi-Ming12,JIN  Xiao-Chun2**,LI  Xiao-Fang14*,LIU Yan-Zhuo1,LIU  Zhi-Xia1,LU  Dong-Bai1,MAO  Xin-Hua1,GAO  Yun1,LU De-Cheng1   

  1. 1 Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; 2 Hunan Agricultural University, Changsha 410128, China; 3 Qianjiang Institute of Agricultural Sciences, Qianjiang 433100, China; 4Yangtze University, Jingzhou 434025, China;
  • Received:2010-06-02 Revised:2010-06-16 Published:2010-10-12 Published online:2010-08-04
  • Contact: LI Xiao-Fang,E-mail:lixiaofang@163.net

摘要: 利用多基因型集成品种群体(由多个类似表型的单基因型品种或品系组成)和单基因型品种群体,分析两种群体中的稻瘟病菌群体遗传结构及发病情况。将这两种群体植株上所采集标样的菌株进行分离纯化,应用细菌基因组重复序列PCR技术(rep-PCR)获得各菌株指纹图谱,并将其划分为若干单元型进行多样性分析。结果显示,稻瘟菌多样性指数范围在集成品种群体内为0.521~0.603,在单一品种群体内为0.319~0.705,说明两种群体内的病菌多样性没有差异,稻瘟菌多样性在抗性弱的品种内低,抗性强的品种内高。病害调查结果表明,集成品种的实际病穗率低于预期发病率,差异极显著。由于集成品种群体中含有抗性强材料阻止了致病菌的扩散,从而控制了病害。进一步证实了种植集成品种是一条控制稻瘟病的有效途径。

关键词: 稻瘟病, 水稻, 单元型, 多基因型

Abstract: The haplotypes of rice blast disease (Magneaporthe grisea) were obtained and analyzed in the multi-genotype and mono-genotype variety groups by DNA fingerprinting with rep-PCR. The isolates of Magneaporthe grisea were classified into several haplotypes. It was found that the diversity index of blast pathogen ranged from 0.521 to 0.603 in multi-genotype varieties, and from 0.319 to 0.705 in mono-genotype varieties. The diversity index of blast pathogen was lower in susceptible varieties and higher in resistant ones. However, there was no difference in the diversity of rice blast fungi between the two variety groups. The disease rate of panicle-neck blast in multi-genotype varieties was remarkably lower than the weighed average value of disease rates in percentage of their components in mono-genotype varieties. The diversity of isolates in both multi-genotype varieties and mono-genotype varieties was not different, but the resistant component of the multi-genotype varieties blocked spore dispersal of the causal fungus and reduced the disease. So using the multi-genotype varieties is a good approach to control the rice blast.

Key words: Blast, Rice, Haplotype, Multi-genotype

[1]Koizumi S. Rice blast control with multilines in Japan. In: Mew T W, Borrmeo E, Hardy B, eds. Exploiting Biodiversity for Sustainable Pest Management. IRRI, Manila, 2001. pp 143-158
[2]Zhu Y Y, Chen H R, Fan J H, Wang Y Y, Li Y, Chen J B, Fan J X, Yang S S, Hu L P, Leung H, Mew T W, Teng P S, Wang Z H, Mundt C C. Genetic diversity and disease control in rice. Nature, 2000, 406: 718-722
[3]Liu E-M(刘二明), Zhu Y-Y(朱有勇), Xiao F-H(肖放华), Luo M(罗敏), Ye H-Z(叶华智). Using genetic diversity of rice varieties for sustainable control of rice blast disease. Sci Agric Sin (中国农业科学), 2003, 36(2): 164-168 (in Chinese with English abstract)
[4]Ma H-G(马辉刚), Shu C(舒畅), Liu K-C(刘康成), Li Y-Y(李佑远), Zhu Y-Y(朱有勇), Tu X-Q(涂雪琴). Studies on rice variety diversity for sustainable control of rice blast. Chin J Eco-Agric (中国生态农业学报), 2007, 15(2): 114-117 (in Chinese with English abstract)
[5]Chin K M, Husin A N. Rice variety mixtures in disease control. In: Heong K L, Lee B S, Lim T M, Teoh C H, Ibrahim Y B, eds. Proceedings of International Conference of Plant Protection in the Tropics. Malaysia: Malaysian Plant Protection Society, 1982. pp 241-246
[6]Chuke K C, Bonman J M. Changes in virulence frequencies of Pyricularia oryzae in pure and mixed stands of rice. J Plant Protection Tropics, 1988, 51: 23-29
[7]Zhuge G Z, Bonman J M. Rice blast in pure and mixed stand of rice varieties. Chin J Rice Sci, 1989, 3(1): 11-16
[8]Deng X-L(邓晓玲), An S-W(安淑文), Liu S-G(刘思国), Pan Q-H(潘庆华). Molecular genetic studies on the rice blast fungus population I. Genetic diversity of the rice blast fungus population in Chinese Guangdong: 1998–1999. Mycosystema (菌物系统), 2002, 2(1): 53-62 (in Chinese with English abstract)
[9]Feng D-G(冯代贵), Peng G-L(彭国亮), Luo Q-M(罗庆明). Relationship between the change of physiological strains of blast fungi and the loss of resistance in the varieties of rice. Acta Phytophylacica Sin (植物保护学报), 1987, 13(5): 2-5 (in Chinese)
[10]Picco A M, Rodolfi M. Pyricularia grisea and Bipolaris oryzae: a preliminary study on the occurrence of airborne spores in a rice field. Aerobiologia, 2002, 18: 163-167
[11]Li X-F(李晓方). A method for the formation of the colony varieties of multi-genotype varieties and production of their seeds. Application Number: PCT/CN2005/000944
[12]Versalovic J, Koeuth T, Lupski J R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucl Acids Res, 1991, 19: 6823-6831
[13]George M L C, Nelson R J, Zeigler R S, Leung H. Rapid genetic and population analysis of Magnaporthe grisea by using rep-PCR and endogenous repetitive DNA sequences. Phytopathology, 1998, 88: 223-229
[14]Jiang Y-X(蒋有绪) trans. Laboratory Manual of General Ecology (普通生态学实验手册). Beijing: Science Press, 1972. pp 120-124 (in Chinese)
[15]Mao J-H(毛建辉), Wang P(王平), Lu D-H(卢代华), He Z-Q(何忠全), Ye H-L(叶慧丽), Yao L(姚琳). Analysis of genetic diversity of Magnaporthe grisea in monoculture and mixed-planting rice field based on SSR markers. Southwest China J Agric Sci (西南农业学报), 2008, 21(5): 1294-1297 (in Chinese with English abstract)
[16]Zhu Y Y, Sun Y, Wang Y Y, Li Y, He Y Q. Genetic analysis of rice varietal diversity for rice blast control. Acta Genet Sin, 2004, 31: 707-716
[17]Mao J-H(毛建辉), He M(何明), He Z-Q(何忠全). Effect of mixed planting with resistant and susceptible cultivars on controlling the major diseases of rice. Acta Phytopathol Sin (植物病理学报), 1991, 21(2): 155-160 (in Chinese)
[18]Guo S-B(郭世保), Huang L-L(黄丽丽), Kang Z-S(康振生), Cheng J-J(程晶晶), Yang Z-W(杨之为). Occurrence and expansion of wheat stripe rust under mixed-cultivar planting. Chin J Eco-Agric (中国生态农业学报), 2010, 18(1): 106-110 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!