作物学报 ›› 2010, Vol. 36 ›› Issue (11): 1981-1989.doi: 10.3724/SP.J.1006.2010.01981
王方永1,王克如1,2,李少昆1,2,*,陈兵1,陈江鲁1
WANG Fang-Yong1,WANG Ke-Ru1,2,LI Shao-Kun1,2,*,CHEN Bing1,CHEN Jiang-Lu1
摘要: 实时、无损监测棉花叶片的叶绿素和氮素含量对诊断棉花生理状况和氮肥精确管理具有重要意义。本研究基于MSI200成像光谱仪和数码相机两种可见光传感器,分析和比较了光谱和颜色参数与叶绿素、氮素浓度和SPAD读数的关系,并且确立了其定量预测模型。结果表明,不同传感器对叶绿素和氮素最敏感的波段分别为R710和R;光谱指数与叶绿素、氮素浓度和SPAD读数的相关性比原始光谱好,而且以蓝光和红光波段组成的差值指数(DI和R–B)的预测能力最佳;DI所建棉花叶片Chl a+b、Chl a、Chl b、N和SPAD读数的预测模型的预测误差分别为0.0058、0.0050、0.0018和2.3002 mg g–1和4.9736(分别为均值的18.39%、19.47%、30.33%、11.69%和8.45%),预测精度R2分别为0.7965、0.7582、0.6608、0.7019和0.7338;R–B所建模型的预测性比DI差,对Chl a+b的预测精度最高(R2=0.7400),而预测Chl b的精度最低(R2=0.5653)。基于CIE 1976 L*a*b*颜色模型的颜色参数b*和HSI颜色模型的S是两种传感器与叶绿素、氮素浓度和叶色关系较好的颜色参数;b*对叶绿素、氮素浓度和SPAD读数的预测能力稍逊于DI,预测误差和精度都与DI的比较接近;而饱和度S值的预测RRMSE最大,整体预测精度小于0.62。因此,可以利用可见光成像传感器的光谱和颜色参数估测棉花叶片叶绿素和氮素含量。
[1]Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiol, 2003, 160: 271–282 [2]Filella I, Serrano L, Serra J, Peńuelas J. Evaluating wheat nitrogen status with canopy re?ectance indices and discriminant analysis. Crop Sci, 1995, 35: 1400–1405 [3]Blackburn G A. Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. Intl J Remote Sens, 1998, 19: 657–675 [4]Moran J A, Mitchell A K, Goodmanson G, Stockburger K A. Differentiation among effects of nitrogen fertilization treatments on conifer seedlings by foliar re?ectance: a comparison of methods. Tree Physiol, 2000, 20: 1113–1120 [5]Schepers J S, Blackmer T M, Wilhelm W W, Resende M. Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply. J Plant Physiol, 1996, 148: 523–529 [6]Fang Z, Bouwkamp J, Solomos T. Chlorophyllase activities and chlorophyll degradation during leaf senescence in non-yellowing mutant and wild type of Phaseolus vulgaris L. J Exp Bot, 1998, 49: 503–510 [7]Buscaglia H J, Varco J J. Early detection of cotton leaf nitrogen status using leaf reflectance. J Plant Nutr, 2002, 25: 2067–2080 [8]Kawashima S, Nakatani M. An algorithm forestimating chlorophyll content in leaves using a video camera. Ann Bot, 1998, 81: 49–54 [9]Thomas J R, Gausman H W. Leaf reflectance vs leaf chlorophyll and carotenoid concentration for eight crops. Agron J, 1977, 69: 799–802 [10]Madeira A C, Ferreira A, Varennes A, Vieira M I. SPAD meter versus tristimulus colorimeter to estimate chlorophyll content and leaf color in sweet pepper. Commun Soil Sci Plant Anal, 2003, 34: 2461–2470 [11]Xue L, Yang L. Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance. ISPRS J Photogrammetry Remote Sens, 2008, doi:10.1016/j.isprsjprs. 2008.06.002 [12]Schlemmer M R, Francis D D, Shanahan J F, Schepers J S. Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agron J, 2005, 97: 106–112 [13]Datt B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in Eucalyptus leaves. Remote Sens Environ, 1998, 66: 111–121 [14]Blackmer T M, Schepers J S, Varvel G E. Light reflectance compared with other nitrogen stress measurements in corn leaves. Agron J, 1994, 86: 934–938 [15]Blackmer T M, Schepers J S, Varvel G E, Walter-Shea E A. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agron J, 1994, 88: 1–5 [16]Xue L, Cao W, Luo W, Dai T, Zhu Y. Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agron J, 2004, 96: 135–142 [17]Zhao D, Reddy K R, Kakani V G, Read J J, Koti S. Selection of optimum reflectance ratios for estimating leaf nitrogen and chlorophyll concentrations of field-grown cotton. Agron J, 2005, 97: 89–98 [18]Jin Z-Y(金震宇), Tian Q-J(田庆久), Hui F-M(惠凤鸣), Lu J-F(陆建飞). Study of the relationship between rice chlorophyll concentration and rice reflectance. Remote Sens Technol Appl (遥感技术与应用), 2003, 18(3): 134–137 (in Chinese with English abstract) [19]Tang Y-L(唐延林), Huang J-F(黄敬峰), Wang R-C(王人潮). Change law of hyperspectral data with chlorophyll and carotenoid for rice at different developmental stages. Chin J Rice Sci (中国水稻科学), 2004, 18(1): 59–66 (in Chinese with English abstract) [20]Gonzalez R C, Woods R E. Digital Image Processing, Second Edition. Pearson Education, Inc., publishing as Prentice Hall, 2002. pp 4–10 [21]Pu R-L(浦瑞良), Gong P(宫鹏). Hyperspectral Remote Sensing and Its Application (高光谱遥感及其应用). Beijing: Higher Education Press, 2000. p 22 (in Chinese) [22]Noh H, Zhang Q, Shin B, Han S, Feng L. A neural network model of maize crop nitrogen stress assessment for a multi-spectral imaging sensor. Biosyst Eng, 2006, 94: 477–485 [23]Jia L, Buerkert A, Chen X, Roemheld V, Zhang F. Low-altitude aerial photography for optimum N fertilization of winter wheat on the North China Plain. Field Crops Res, 2004, 89: 389–395 [24]Jia L, Chen X, Zhang F, Buerkert A, Römheld V. Use of digital camera to assess nitrogen status of winter wheat in the northern China plain. J Plant Nutr, 2004, 27: 441–450 [25]Graeff, S, Claupein W. Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements. Eur J Agron, 2003, 19: 611–618 [26]Graeff S, Pfenning J, Claupein W, Liebig H P. Evaluation of image analysis to determine the N-fertilizer demand of Broccoli plants (Brassica oleracea convar. botrytis var. italica). Adv Optical Technol, 2008, DOI:10.1155/2008/359760 [27]Ahmad I S, Reid J F. Evaluation of colour representations for maize images. J Agric Engng Res, 1996, 63: 185–195 [28]Adamsen F J, Pinter P J, Jr, Barnes E M, LaMorte R L, Wall G W, Leavitt S W, Kimball B A. Measuring wheat senescence with a digital camera. Crop Sci., 1999, 39: 719–724 [29]Karcher D E, Richardson M D. Quantifying turfgrass color using digital image analysis. Crop Sci, 2003, 43: 943–951 [30]Wang K-R(王克如), Li S-K(李少昆), Wang C-T(王崇桃), Yang L(杨蕾), Xie R-Z(谢瑞芝), Gao S-J(高世菊), Bai J-H(柏军华). Acquired chlorophyll concentration of cotton leaves with technology of machine vision. Acta Agron Sin (作物学报), 2006, 32(1): 34–40 (in Chinese with English abstract) [31]Wang F-Y(王方永), Li S-K(李少昆), Wang K-R(王克如), Sui X-Y(隋学艳), Bai J-H(柏军华), Chen B(陈兵), Liu G-Q(刘国庆), Tan H-Z(谭海珍). Obtaining information of cotton population chlorophyll by using machine vision technology. Acta Agron Sin (作物学报), 2007, 33(12): 2041–2046 (in Chinese with English abstract) [32]Tan H-Z(谭海珍), Li S-K(李少昆), Wang K-R(王克如), Xie R-Z(谢瑞芝), Gao S-J(高世菊), Ming B(明博), Yu Q(于青), Lai J-C(赖军臣), Liu G-Q(刘国庆), Tang Q-X(汤秋香). Monitoring canopy chlorophyll density in seedlings of winter wheat using imaging spectrometer. Acta Agron Sin (作物学报), 2008, 34(10): 1812–1817 (in Chinese with English abstract) [33]Lichtenthale H K. Chlorophyll and Carotenoids, the Pigments of Photosynthetic Biomembranes. Methods in Enzymology. San Diego, CA: Academic Press, 1987. 148: 350–382 [34]Massart D L, Vandeginste B G M, Deming S M, Michotte Y, Kaufman L. Chenometrics: A Textbook. Elsevier, Amsterdam, 1988 [35]Broge N H, Mortensen J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sens Environ, 2002, 81: 45–57 [36]Gamon J A, Surfus J S. Assessing leaf pigment content and activity with a reflectometer. New Phytol, 1999, 143: 105−117 [37]Yao X(姚霞), Wu H-B(吴华兵), Zhu Y(朱艳), Tian Y-C(田永超), Zhou Z-G(周治国), Cao W-X(曹卫星). Relationship between pigment concentration and hyper-spectral parameters in functional leaves of cotton. Cotton Sci (棉花学报), 2007, 19(4): 267–272 (in Chinese with English abstract) [38]Blackburn G A. Hyperspectral remote sensing of plant pigments. J Exp Bot, 2007, 58: 855−867 [39]Blackburn G A. Remote sensing of forest pigments using airborne imaging spectrometer and LIDAR imagery. Remote Sens Environ, 2002, 82: 311–321 |
[1] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[2] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[3] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[4] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[5] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
[6] | 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422. |
[7] | 谢呈辉, 马海曌, 许宏伟, 徐郗阳, 阮国兵, 郭峥岩, 宁永培, 冯永忠, 杨改河, 任广鑫. 施氮量对宁夏引黄灌区麦后复种糜子生长、产量及氮素利用的影响[J]. 作物学报, 2022, 48(2): 463-477. |
[8] | 阮俊梅, 张俊, 刘猷红, 董文军, 孟英, 邓艾兴, 杨万深, 宋振伟, 张卫建. 田间开放式增温对东北水稻氮素利用的影响[J]. 作物学报, 2022, 48(1): 193-202. |
[9] | 付正豪, 马中涛, 魏海燕, 邢志鹏, 刘国栋, 胡群, 张洪程. 不同机械化栽培方式下控释肥配比对迟熟中粳水稻产量形成及氮素吸收利用的影响[J]. 作物学报, 2022, 48(1): 165-179. |
[10] | 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679. |
[11] | 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580. |
[12] | 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359. |
[13] | 柯健, 陈婷婷, 徐浩聪, 朱铁忠, 吴汉, 何海兵, 尤翠翠, 朱德泉, 武立权. 控释氮肥运筹对钵苗摆栽籼粳杂交稻甬优1540产量及氮肥利用的影响[J]. 作物学报, 2021, 47(7): 1372-1382. |
[14] | 吴冰卉, 王桂萍, 王玉斌, 李召虎, 张明才. ACC处理对不同基因型玉米幼苗响应氮素供给的调控效应[J]. 作物学报, 2021, 47(5): 799-806. |
[15] | 葛敏, 王元琮, 宁丽华, 胡梦梅, 石习, 赵涵. 氮响应转录因子ZmNLP5影响玉米根系生长的功能研究[J]. 作物学报, 2021, 47(5): 807-813. |
|