欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (2): 242-248.doi: 10.3724/SP.J.1006.2010.00242

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆叶绿素含量动态表达的QTL分析

李广军1,2,李河南1,程利国1,章元明1,*   

  1. 1 南京农业大学作物遗传与种质创新国家重点实验室 / 国家大豆改良中心,江苏南京 210095;2 临沂师范学院,山东临沂 276005
  • 收稿日期:2009-07-28 修回日期:2009-12-08 出版日期:2010-02-10 网络出版日期:2009-12-21
  • 通讯作者: 章元明,E-mail: soyzhang@njau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30470998),教育部新世纪优秀人才支持计划项目(NECT-05-0489),高等学校博士点基金项目(20060307008),江苏省自然科学基金项目(BK2008335)和教育部"111"计划(B08025)资助。

QTL Analysis for Dynamic Expression of Chlorophyll Content in Soybean (Glycine max L. Merri.)

LI Guang-Jun1,2,LI He-Nan,CHENG Li-Guo,ZHANG Yuan-Ming1,*   

  1. 1 State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University / National Center for Soybean Improvement, Nanjing 210095, China; 2 Linyi Normal University, Linyi 276005, China
  • Received:2009-07-28 Revised:2009-12-08 Published:2010-02-10 Published online:2009-12-21
  • Contact: ZHANG Yuan-Ming,E-mail:soyzhang@njau.edu.cn

摘要:

叶绿素是光合作用中最重要的色素,与大豆籽粒产量密切相关。本研究采用溧水中子黄豆×南农493-1后代衍生的244F2株,及筛选的150SSR分子标记构建连锁遗传图谱,在苗期至开花期测定F2衍生F2:3F2:4家系生长正常单株的倒3复叶功能叶(非离体)的叶绿素含量13次,通过Windows QTL Cartographer v2.5软件包的复合区间法,动态定位了大豆叶绿素含量的QTL。结果表明,不同时间点共检测到20QTL,其中,不同发育阶段间、年份间和地点间共同的QTL较少,不同时间点上的QTL差异较大,重复出现在ND1aFK连锁群的QTL3~4次。这些结果为叶绿素含量的遗传剖析和标记辅助育种提供理论依据。

关键词: 大豆, 叶绿素含量, QTL, 动态表达

Abstract:

Chlorophyll is the most important photosynthetic pigment and closely related to soybean seed yield. However, there are still very few studies at different developmental stages under multiple environments. A genetic linkage map using 244 F2 plants derived from a soybean cross between Lishuizhongzihuang and Nannong 493-1 was constructed. F2:3 and F2:4 families were used to dissect the developmental behavior for chlorophyll content across different environments by quantitative trait locus (QTL) mapping approach. Chlorophyll contentsfor the function leaf (in vivo) in the 244 F2:3 and F2:4 families from seedling to blooming stages at Jiangpu and/or Linyi experimental stations in 2007 and/or 2008 were measured by SPAD-502 chlorophyll instrument. Composite interval mapping (CIM) of Windows QTL Cartographer V2.5 was used for the QTL analysis. A total of 20 QTLs were detected at various developmental stages under two environments, but there were few common QTLs identified across different developmental stages, across years and across experimental stations, although there were 3 to 4 QTLs detected on each of the N, D1a, F and K linkage groups. In the two years above, one common QTL, qchl-D1a-1, located between markers sat_160 and satt147 on the linkage group D1a, was identified at Jiangpu experimental station. At the two experimental stations above, three common QTLs on the K, M and N linkage groups were mapped. These results provide a theoretical basis for genetic analysis of chlorophyll traits and marker-assisted breeding.

Key words: Soybean, Chlorphyll, Quantitative trait locus, Dynamic Expression


[1] Haberlandt G. Physiological Plant Anatomy. London: Macmillan, 1914

[2] Buttery B R, Buzzell R I, Findlay W I. Relationship among photosynthetic rate, bean yield and other characters in field-grown cultivars of soybean. Can J Plant Sci, 1981, 61: 191-198

[3] Ma B L, Morrison M J, Voldeng H D. Leaf greenness and photosynthetic rates in soybean. Crop Sci, 1995, 35: 1411-1414

[4] Wu P(吴平), Luo A-C(罗安程). Investigation on genetic background of leave chlorophyll content variation in rice under nitrogen stressed condition via molecular markers. Acta Genet Sin (遗传学报), 1996, 23(6): 431-443 (in Chinese with English abstract)

[5] Cao W-D(曹卫东植物营养与肥料学报), 2004, 10(5): 473-478 (in Chinese with English abstract)), Jia J-Z(贾继增), Jin J-Y(金继运). Identification and interaction analysis of QTL for chlorophyll content in wheat seedlings. Plant Nutr Fert Sci (

[6] This D, Borries C, Souyris I, Teulat B. QTL study of chlorophyll content as a genetic parameter of drought tolerance in barley. BarleyGenet Newsl, 2000, 30: 20-23

[7] Qin H-D(秦鸿德), Zhang T-Z(张天真). QTL mapping of leaf chlorophyll content and photosynthetic rates in cotton. Cotton Sci (棉花学报), 2008, 20(5): 394-398 (in Chinese with English abstract)

[8] Tuinstra M R, Grote E M, Goldsbrough P B, Ejeta G. Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol Breed, 1997, 3: 439-448

[9] Xu W W, Subudhi P K, Crasta O R, Rosenow D T, Mullet J E, Nguyen H T. Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome, 2000, 43: 461-469

[10] Li X-Y(李贤勇), Wang C-T(王楚桃), Li S-W(李顺武), He Y-X(何永歆), Chen S-Q(陈世全). The discovery of a high chlorophyll content gene in rice. Southwest China J Agric Sci (西南农业学报), 2002, 15(4): 122-123 (in Chinese with English abstract)

[11] Lin S, Cianzio S, Shoemaker R. Mapping genetic loci for iron deficiency chlorosis in soybean. Mol Breed,1997, 3:219-229

[12] Kato K K, Palmer R G. Duplicate chlorophyll-deficient loci in soybean. Genome, 2004, 47: 190-198

[13] Cui S-Y(崔世友), Yu D-Y(喻德跃). QTL mapping of chlorophyll content at various growing stages and its relationship with yield in soybean

[Glycine max (L.) Merr.]. Acta Agron Sin (作物学报), 2007, 33(5): 744-750 (in Chinese with English abstract)

[14] Shen B(沈波), Zhuang J-Y(庄杰云), Zhang K-Q(张克勤), Dai W-M(戴伟民), Lu Y(鲁烨), Fu L-Q(傅丽卿), Ding J-M(丁佳铭), Zheng K-L(郑康乐). Analysis of interaction between QTL and environment on chlorophyll contents in rice. Sci Agric Sin (中国农业科学), 2005, 38(10): 1937-1943 (in Chinese with English abstract)

[15] Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122-128

[16] Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribisomal DNA space-length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014-8018

[17] Santos F R, Pena S D J, Epplen J T. Genetic and population study of an Y-linked tetranucleotide repeat DNA polymorphism with a simple non-isotopic technique. Hum Genet, 1993, 90: 655-656

[18] Van Ooijen J W, Voorrips R E. JoinMap Version 3.0: Software for the calculation of genetic linkage maps. Wageningen: CPRO-DLO, 2001

[19] Kosambi D D. The estimation of map distances from recombination values. Ann Eugenics, 1944, 12: 172-175

[20] Fanizza G, Gatta C D, Bagnulo C. A non-destructive determination of leaf chlorophyll in Vitis vinifera. Annu Appl Biol, 1991, 119: 203-209

[21] Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer v2.5. Department of Statistics, North Carolina State University, 2007, Raleigh, NC

[22] Voorrips R E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77-78

[23] Li H-N(李河南). Genetic analysis of yield related traits in soybean (Glycine max L. Merrill). MS of Nanjing Agricultural University, 2009 Dissertation

[24] Li G-J(李广军). Detection of Quantitative Trait Loci of the Traits Related to Photooxidation, Dynamic Chlorophyll Content and Resistance to Soybean Pyralid (Lamprosema indicata Fabricius)in Soybean (Glycine max L. Merrill). PhD Dissertation of Nanjing Agricultural University, 2009

[25] Ma L Q, Zhou E F, Huo N X, Zhou R H, Wang G Y, Jia J Z . Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica, 2007, 153: 109-117

[26] Bradshaw H D Jr., Stettler R F. Molecular genetics of growth and development in Populus: IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics, 1995, 139: 963-973

[27] Wu W R, Li W M, Tang D Z, Lu H R, Worland A J. Time-related mapping of quantitative trait loci underlying tiller number in rice. Genetics, 1999, 151: 297-303

[28] Ruan C-J(阮成江), He Z-X(何祯祥), Qin P(钦佩). Research advancements on crop QTL mapping in China. Chin Bull Bot (植物学通报), 2003, 20(1): 10-22 (in Chinese with English abstract)

[29] Yan J Q, Zhu J, He C X, Benmoussa M, Wu P. Quantitative trait loci analysis for development behavior of tiller number in rice (Oryza sativa L.). Theor Appl Genet, 1998, 97: 267-274

[30]Yan J-B(严建兵), Tang H(汤华), Huang Y-Q(黄益勤), Shi Y-G(石永刚), Li J-S(李建生), Zheng Y-L(郑用琏). QTL mapping for developmental behavior for plant height in maize. Chin Sci Bull (科学通报), 2003, 48(18): 1959-1964 (in Chinese with English abstract)

[31] Li W-H(李卫华), You M-S(尤明山), Liu W(刘伟), Xu J(徐杰), Liu C-L(刘春雷), Li B-Y(李保云), Liu G-T(刘广田). QTL mapping for developmental behavior of GMP content in wheat. Acta Agron Sin (作物学报), 2006, 32(7): 995-1000 (in Chinese with English abstract)

[32] Liu L(刘丽), Li W-H(李卫华), Liu W(刘伟), Cao L-P(曹连莆), Li B-Y(李保云), Liu G-T(刘广田). Analysis of QTL for SIG at different developmental stages in wheat. Sci Agric Sin (中国农业科学), 2008, 41(11): 3838-3844 (in Chinese with English abstract)

[33] Sun D-S(孙德生), Li W-B(李文滨), Zhang Z-C(张忠臣), Chen Q-S(陈庆山), Yang Q-K(杨庆凯). Analysis of QTL for plant height at different developmental stages in soybean. Acta Agron Sin(作物学报), 2006, 32(4): 509-514 (in Chinese with English abstract)

[34] Cao S-Q(曹树青), Zhai H-Q(翟虎渠), Sheng S-L(盛胜兰), Gong H-B(龚红兵), Lin T-Z(林添资), Yang T-N(杨图南), Zhang R-X(张荣铣), Kuang T-Y(匡廷云). Photosynthetic carbon assimilating properties in high-yield hybrid rice II You 129. Hybrid Rice (杂交水稻), 2001, 16(1): 46-50 (in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[14] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[15] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!