欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (3): 442-448.doi: 10.3724/SP.J.1006.2010.00442

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用“永久F2”群体进行小麦幼苗根系性状QTL分析

李卓坤1,彭涛1,2,张卫东1,谢全刚1,田纪春1,*   

  1. 1山东农业大学国家作物生物学重点实验室小麦品质育种室,山东泰安271018;2济源市农业科学研究所,河南济源454652
  • 收稿日期:2009-07-07 修回日期:2009-10-03 出版日期:2010-03-12 网络出版日期:2010-01-22
  • 通讯作者: 田纪春, E-mail: jctian@sdau.edu.cn; Tel: 0538-8242040
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118301)资助。

Analsysis of QTLs for Root Traits at Seedling Stage Using an "Immortalized F2"Population in Wheat

LI Zhuo-Kun1,PENG Tao1,2,ZHANG Wei-Dong1,XIE Quan-Gang1,TIAN Ji-Chun1,*   

  1. 1 Group of Quality Wheat Breeding of Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; 2 Institute of Jiyuan Agricultural Science, Jiyuan 454652, China
  • Received:2009-07-07 Revised:2009-10-03 Published:2010-03-12 Published online:2010-01-22
  • Contact: TIAN Ji-Chun,E-mail:jctian@sdau.edu.cn;Tel:0538-8242040

摘要:

为了研究小麦苗期根系性状的遗传,以小麦品种花培3号和豫麦57的杂交DH群体组配了一套含168个杂交组合的永久F2群体。利用WinRHIZO根系分析系统测定四叶一心期小麦水培幼苗根系总长度、直径、表面积、体积、根尖数、最大根长、茎叶干重、根干重及根茎干重比9个性状。采用复合区间作图法分析幼苗根系8个性状的QTL,定位了7个加性效应QTL12对上位性互作QTL,包括加性效应、显性效应,加加互作、加显互作和显显互作,分布在1A1D2A2B2D3A3B5D6D7D染色体上,单个QTL可解释0.01%~11.91%的遗传变异。在染色体2DXWMC41XBARC349.2区间检测到同时控制总根长和根干重的一个QTL。上位性对苗期根系生长发育有重要作用。试验结果表明,苗期根系性状的遗传机制较复杂, 因此在育种中要综合考虑根系各性状之间的关系,保证根系协调统一、发达健壮。

关键词: 小麦, “永久F2”群体, 根系性状, QTL定位, 基因效应

Abstract:

Identification of quantitative trait loci (QTLs) of roots plays an important role in the genetic mechanism study of root system. A number of QTLs for root traits have been detected using different populations in rice (Oryza sativa L.), but rarely in wheat (Triticum aestivum L.). The “immortalized F2” population is favorable for QTL analysis due to their similar proportions of genotypes in the population, and the replicability at multiple locations over several years. The objective of this study was to detect QTLs for several root traits at seedling stage in wheat. From a set of doubled haploid lines derived from Huapei 3 × Yumai 57, an “immortalized F2” population was constructed with 168 single crosses. Wheat seedlings were hydroponically cultured with Hoagland’s solution in a light incubator, and sampled when the fifth leaf emerged. Nine root traits including root total length, root surface area, root average diameter, root volume, root tips, maximum root length, shoot dry weight, root dry weight, and ratio of root dry weight to shoot dry weight per plant were measured using the WinRHIZO Root Analysis System. QTLs associated with the nine traits were detected using composite interval mapping (CIM) method. A total of seven additive QTLs and twelve pairs of epistatic QTLs were mapped on chromosomes 1A, 1D, 2A, 2B, 2D, 3A, 3B, 5D, 6D, and 7D. Additive, dominant and epistatic effects were observed across these QTLs, including the interactions between additive and additive, additive and dominance, dominance and additive, as well as dominance and dominance. The phenotypic variation explained by each QTL ranged from 0.01% to 11.91%. In the interval between XWMC41 and XBARC349.2 on chromosome 2D, a QTL for total root length and the root dry weight was detected. Epistasis was of great importance in root growth and development at seedling stage in wheat. Theresults showed a complex mechanism on the genetics of root traits in wheat, and the eight root traits were significantly correlated with each other. In marker-assisted breeding practice, several root traits should be considered simultaneously for an integrated performance of roots with proper size and shape.

Key words: Common wheat, Immortalized F2 population, Root traits, Quantitative trait locus mapping, Gene action

[1] Liu T-J(刘桃菊), Qi C-H(戚昌瀚), Tang J-J(唐建军). Studies on relationship between the character parameters of root and yield formation in rice. Sci Agric Sin (中国农业科学), 2002, 35(11): 1416-1419 (in Chinese with English abstract)

[2] Partha D A S, Ali M N, Sarkar H K. Genetical studies on roots in bread wheat. J Interacademicia, 2004, 8: 166-168

[3] Moudal S K, Kour K. Genetic variability and correlation coefficients of some root characteristics and yield components in bread wheat (Triticum aestivum L.) under rainfed condition. Environ Ecol, 2004, 22: 646-648

[4] Caradus J R. Genetic control of phosphorus uptake and phosphorus status in plants. In: Genetic Manipulation of Crop Plants to Enhance Integrated Nutrient Management in Cropping System. Patancheru, India: ICRISAT Asia Centre, 1995. pp 55-74

[5] Champoux M C, Wang G, Sarkarung S, Mackill D J, Toole T C O, Huang N, McCouch S R. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet, 1995, 90: 969-981
[6] Ray J D, Yu L X, Mccouch S R, Mackill D J, Toole T C O, Huang N, MeCouch S R. Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.). Theor Appl Genet, 1996, 92: 627-636
[7] Fang P(方萍), Wu P(吴平), Tao Q-N(陶勤南). QTLs for rice root morphological characters. Acta Agron Sin (作物学报), 1999, 25(2): 181-185 (in Chinese with English abstract)

[8] Mu P(穆平), Li Z-C(李自超), Li C-P(李春平), Zhang H-L(张洪亮), Wu C-M(吴长明), Li C(李晨), Wang X-K(王象坤). QTL mapping and G×E interaction for root traits in a DH population from japonica upland and lowland rice cross under three ecosystems. Chin Sci Bull (科学通报), 2003, 48(20): 2162-2169 (in Chinese with English abstract)
[9] Zhang Z-B(张正斌), Xu P (徐萍). Reviewed on wheat genome. Hereditas (遗传), 2002, 24(3): 389-394 (in Chinese with English abstract)
[10] Zhou X-G(周晓果), Jing R-L(景蕊莲), Hao Z-F(郝转芳), Chang X-P(昌小平), Zhang Z-B(张正斌). Mapping QTL for seedling root traits in common wheat. Sci Agric Sin (中国农业科学), 2005, 38(10): 1951-1957 (in Chinese with English abstract)
[11] Hua J P, Xing Y Z, Wu W R, Xu C G, Sun X L, Yu S B, Zhang Q F. Single-locus heterotic effects and dominance by dominance interaction can adequately explain the genetic basis of heterosis in an elite hybrid. Proc Natl Acad Sci USA, 2003, 100: 2574-2579

[12] Hai Y(海燕), Kang M-H(康明辉). Breeding of a new wheat variety Huapei 3 with high yield and early maturing. Henan Agric Sci (河南农业科学), 2007, (5): 36-37 (in Chinese with English abstract)

[13] Guo C-Q(郭春强), Bai Z-A(柏志安), Liao P-A(廖平安), Jin W-K(靳文奎). New high quality and yield wheat variety Yumai 57. China Seed (中国种业), 2004, (4): 54 (in Chinese with English abstract)
[14] An D G, Su J Y, Liu Q Y, Zhu Y G, Tong Y P, Li J M, Jing R L, Li B, Li Z S. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil, 2006, 284: 73-84
[15] Zhang K P, Tian J C, Zhao L, Liu B, Chen G F. Detection of quantitative trait loci for heading date based on the doubled haploid progeny of two elite Chinese wheat cultivars. Genetica, 2009, 135:257-265

[16] Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99: 1255-1264

[17] Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects. Theor Appl Genet, 2005, 110: 1268-1274

[18] McIntosh RA, Devos K M, Dubcovsky J, Rogers W J, Morris C F, Appels R, Anderson O D. Catalogue of gene symbols for wheat. 2005
[2009-06-30].http://wheat.pw.usda.gov/ggpages/wgc/2005upd.html
[19] Li Z K, Luo L J, Mei H W, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominance epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice: I. Biomass and grain yield. Genetics, 2001, 158: 1737-1753

[20] Mei H W, Li Z K, Shu Q Y, Guo L B, Wang Y P, Yu X Q, Ying C S, Luo L J. Gene actions of QTL affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross population. Theor Appl Genet, 2005, 110: 649-659
[21] Xing Y Z, Tan Y F, Hua J P, Sun X L, Xu C G, Zhang Q F. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet, 2002, 105: 248-257

[22] Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li H X, Zhang Q F, Saghai Maroof M A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997, 94: 9226-9231

[23] Xu J-L(徐建龙), Xue Q-Z(薛庆中), Luo L-J(罗利军), Li Z-K(黎志康). QTL dissection of panicle number per plant and spikelet number per panicle in rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2001, 28(8): 752-759 (in Chinese with English abstract)
[24] Zhang K-P(张坤普), Xu X-B(徐宪斌), Tian J-C(田纪春). QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin (作物学报), 2009, 35(2): 270-278 (in Chinese with English abstract)
[25] Rebetzke G J, Bruce S E, Kirkegaard J A. Longer coleoptiles improve emergence through crop residues to increase seedling number and biomass in wheat (Triticum aestivum L.). Plant Soil, 2005, 272: 87-100
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[14] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[15] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!