作物学报 ›› 2010, Vol. 36 ›› Issue (3): 477-485.doi: 10.3724/SP.J.1006.2010.00477
雍太文,陈小容,杨文钰*,向达兵,樊高琼
YONG Tai-Wen,CHEN Xiao-Rong,YANG Wen-Yu*,XIANG Da-Bing,FAN Gao-Qiong
摘要:
为探讨小麦/玉米/大豆多熟套作体系下小麦根系分泌物的分泌特性及其对根系生长环境和植株氮素吸收的影响,2006—2008年连续两个生长季采用田间定位试验,研究了小麦-大豆、小麦-甘薯、小麦/玉米/大豆和小麦/玉米/甘薯4种种植模式下小麦根系分泌物的数量与种类、小麦根系生长、土壤水分、土壤氮含量及植株吸氮量的变化特性。结果表明,与小麦-大豆和小麦-甘薯两种净作模式及小麦/玉米/甘薯套作模式相比,小麦/玉米/大豆套作降低了开花期和成熟期小麦生长区的土壤湿度、pH值及NO3--N和NH4+-N的含量,提高了小麦植株地上部总吸氮量、根系活力、根干重及土壤总氮含量,并且,开花期小麦根系分泌有机酸总量和可溶性糖含量增加,表现为套作>净作,大豆茬口>甘薯茬口,边行>中行,其中以小麦边行处理的分泌量最高。拔节期根系分泌的有机酸,净作处理以乙酸含量较高,占总量的47.8%~51.6%,套作处理以柠檬酸含量较高,占总量的31.7%~55.1%;开花期根系分泌的有机酸,净作和套作处理均以乙酸含量较高,占总量的33.3%~78.3%。小麦/玉米/大豆套作对小麦根系分泌有机酸和可溶性糖有促进作用,从而改善了根系生长环境,提高了小麦对氮素的吸收。
[1] Lynch J M, Whipps J M. Substrate flow in the rhizosphere. Plant Soil, 1990, 129: 1-10 [2] Tu S-X(涂书新), Guo Z-F(郭智芬). The root exudation of grain amaranth and its role in release of mineral potassium. Acta Agric Nucl Sin (核农学报), 1999, 13(5): 305-311 (in Chinese with English abstract) [3] Li T-X(李廷轩), Ma G-R(马国瑞), Zhang X-Z(张锡洲),Wang C-Q(王昌全).Change characteristics of organic acid and amino acid in root exudates in different grain amaranth genotypes.Plant Nutr Fert Sci (植物营养与肥料学报), 2005, 11(5): 647-653 (in Chinese with English abstract) [4] Zhang F-S(张福锁). New Trends of Soil and Plant Nutrition (土壤与植物营养研究新动态). Beijing: Beijing Agricultural University Press, 1992. pp 64-70 (in Chinese) [5] Rice E J, Pancholy S K. Inhibition of nitrification by climax ecosystems: Inhibitors other than tannins. Am J Bot, 1974, 61: 1095-1103 [6] Sun L(孙磊), Chen B-L(陈兵林), Zhou Z-G(周治国). Effects of root exudates on available soil nutrition, micro-organism quantity of Bt cotton in wheat-cotton intercropping system. Cotton Sci (棉花学报), 2007, 19(1): 18-22 (in Chinese with English abstract) [7]Thackray D J,Wratien S D,Edwards P J, Niemeyer H M. Resistance to the aphids sitobion avenae and rhopal osiphum padi in Graminea in relation to hydroxamic levels. Ann Appl Biol, 1990, 116: 573-582 [8] Lipton D S, Blanchar R W, Blevins D G. Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed. Medicago sativa L. seedings, Plant Physiol, 1987, 85: 315-317 [9] Tu S-X(涂书新), Sun J-H(孙锦荷), Guo Z-F(郭智芬), Gu F(谷峰). On relationship between root exudates and plant nutrition in rhizosphere. Soil Environ Sci (土壤与环境), 2000, 9(1): 64-67 (in Chinese with English abstract) [10] Chen L-C(陈龙池), Liao L-P(廖利平), Wang S-L(汪思龙), Xiao F-M(肖复明). A review for research of root exudates ecology. Chin J Ecol(生态学杂志), 2002, 21(6): 57-62(in Chinese with English abstract) [11] Zhang F-S(张福锁). Enviroment Stress and Plant Rhizospere Nutrition (环境胁迫与植物根际营养). Beijing: China Agriculture Press, 1998. pp 16-56 (in Chinese) [12] Yong T-W(雍太文), Ren W-J(任万军), Yang W-Y(杨文钰), Fan G-Q(樊高琼). Meaning and characteristic and cultivation technique of “wheat/maize/soybean” relay cropping system. Gengzuo yu Zaipei (耕作与栽培), 2006, (6): 78-81 (in Chinese) [13] Yong T-W(雍太文), Yang W-Y(杨文钰), Ren W-J(任万军), Fan G-Q(樊高琼), Xiang D-B(向达兵).Analysis of the nitrogen transfer, nitrogen uptake and utilization in the two relay-planting systems. Sci Agric Sin (中国农业科学), 2009, 42(9): 3170-3178 (in Chinese with English abstract) [14] Yong T-W(雍太文), Yang W-Y(杨文钰), Fan G-Q(樊高琼), Zhang Y-F(张亚飞). Study on the annual balance application of nitrogen fertilizer in the relay-cropping system of “wheat/maize/soybean”. Soil Fert China (中国土壤与肥料), 2009, 211(3): 31-35 (in Chinese with English abstract) [15] Yong T-W(雍太文), Yang W-Y(杨文钰),Wang X-C(王小春), Fan G-Q(樊高琼). Study on the nitrogen uptake and utilization and interspecies reciprocity in the two relay-planting systems. J Sichuan Agric Univ(四川农业大学学报), 2009, 27(2): 167-172 (in Chinese with English abstract) [16] Bao S-D(鲍士旦). Analysis Methods for Soil Agrochemistry (土壤农化分析). Beijing: Agriculture Press, 1987. pp 191-203(in Chinese) [17] Hu X-Y(胡学玉), Li X-Y(李学垣), Xie Z-C(谢振翅). Differences of Zn uptake in various pakchoi cultivars relationship between Zn uptake root exudates. Plant Nutr Fert Sci (植物营养与肥料学报), 2002, 8(2): 234-238(in Chinese with English abstract) [18] Hao J-J(郝建军), Kang Z-L(康宗利), Yu Y(于洋). Experimental Techniques for Plant Physiology (植物生理学实验技术). Beijing: Chemical Industry Press, 2007. pp 89-112 (in Chinese) [19] Liu H-S(刘洪升), Song Q-H(宋秋华), Li F-M(李凤民). The role of root exudates on rhizosphere mineral nutrition and rhizosphere micro-organisms. Acta Bot Boreali-Occident Sin (西北植物学报), 2002, 22(3): 693-702 (in Chinese with English abstract) [20] Li Z-H(李志洪), Chen D(陈丹), Sun X-Q(孙晓秋), Dou S(窦森). Effects of phosphorus deficiency on excretion of organic acids for different maize genotypes and mobilization of undissolved phosphorus. Plant Physiol Commun (植物生理学通讯), 1999, 35(6): 455-457 (in Chinese with English abstract) [21] Zhang X-Z(张锡洲), Li T-X(李廷轩), Wang Y-D(王永东). Relationship between growth environment and root exudates of plants. Chin J Soil Sci(土壤通报), 2007, 38(4): 785-789 (in Chinese with English abstract) [22] Roemheld V, Marschner H. Genotypes differences among graminaceous in release of phytosiderophores and uptake of iron phytosiderophores. Plant Soil, 1990, 123: 147-153 [23] Strom L, Olsson T, Tyler G. Difference between calcifuge and acidfuge plants in root exudation of low-molecular organic acids. Plant Soil, 1994, 167: 239-245 [24] Hao Y-R(郝艳茹), Lao X-R(劳秀荣), Sun W-H(孙伟红), Peng S-L(彭少麟). Interaction of roots and rhizophere in the wheat-maize intercropping system. Rural Eco-Environ (农村生态环境), 2003, 19(4): 18-22 (in Chinese with English abstract) [25] Zuo Y-M(左元梅), Chen Q(陈清), Zhang F-S(张福锁). The mechanisms of root exudates of maize in improvement of iron nutrition of peanut in peanut/maize intercropping system by 14C tracer technique. Acta Agric Nucl Sin (核农学报), 2004, 18(1): 43-46 (in Chinese with English abstract) [26] Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G. Soil organic matter mobilization by root exudates. Chemosphere, 2000, 41: 653-658 [27] Marschenerh. Role of root growth, arbuscular mycorrhiza, and root exudates for the efficiency in nutrient acquisition. Field Crops Res, 1998, 56: 203-207 [28] Sun L(孙磊), Chen B-L(陈兵林), Zhou Z-G(周治国). Effect of allelopathic substance from wheat root zones on the growth of cotton seedling in wheat-cotton inter-planting system. Cotton Sci (棉花学报), 2006, 18(4): 213-217 (in Chinese with English abstract) |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[4] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[5] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[6] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[7] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[8] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[9] | 闫岩, 张钰石, 刘础荣, 任丹阳, 刘洪润, 刘雪晴, 张明才, 李召虎. 冬小麦-夏玉米轮作“双晚”种植模式下的品种匹配与资源效率[J]. 作物学报, 2022, 48(2): 423-436. |
[10] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[11] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[12] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[13] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[14] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[15] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
|