作物学报 ›› 2011, Vol. 37 ›› Issue (03): 469-476.doi: 10.3724/SP.J.1006.2011.00469
赵芳明1,张桂权2,曾瑞珍2,杨正林1,凌英华1,桑贤春1,何光华1,*
ZHAO Fang-Ming1,ZHANG Gui-Quan2,ZENG Rui-Zhen2,YANG Zheng-Lin1,LING Ying-Hua1,SANG Xian-Chun1,HE Guang-Hua1,*
摘要: 以分子标记辅助选择的手段有目的地进行基因聚合育种,对于加快育种进程具有重要的意义。而基因的加性和上位性效应是决定基因聚合能否成功的关键。本文以16个单片段代换系(SSSL)及15个双片段代换系分析了水稻粒型性状QTL的加性及上位性效应。共检测到9个水稻粒型性状QTL,包括4个粒长QTL、1个粒宽QTL和4个籽粒长宽比QTL,分别位于第2、第3、第4、第7和第10染色体上。此外,还检测出7对双基因互作,其中3对为有显著效应的两座位间互作,1对为两座位均没有显著效应的座位间互作,3对为1个有显著效应的座位与1个没有显著效应的座位间互作。本文结果进一步揭示了同一粒长QTL与不同单片段代换系聚合时会产生不同的互作效应,只有当上位性效应与目标基因的加性效应同向时,才可以达到明显改良粒长的效果。而且,2个长粒或2个短粒QTL聚合很难再产生更长或更短的籽粒。以上结果对于通过分子标记辅助育种手段改良水稻粒型具有重要意义。
[1]Luo Y-K(罗玉坤), Zhu Z-W(朱智伟), Chen N(陈能), Duan B-W(段彬伍), Zhang L-P(章林平). Grain types and related quality characteristics of rice in China. Chinese J Rice Sci (中国水稻科学), 2004, 18(2): 135-139 (in Chinese with English abstract) [2]Xu Z-J(徐正进), Chen W-F(陈温福), Ma D-R(马殿荣), Lü Y-N(吕英娜), Zhou S-Q(周淑清), Liu L-X(刘丽霞). Correlations between rice grain shapes and main qualitative characteristics. Acta Agron Sin (作物学报), 2004, 30 (9): 894-900 (in Chinese with English abstract) [3]Xing Y-Z(邢永忠), Tan Y-F(谈移芳), Xu C-G(徐才国), Hua J-P(华金平), Sun X-L(孙新立). Mapping quantitative trait loci for grain appearance traits of rice using a recombinant inbred line population. Acta Bot Sin (植物学报), 2001, 43(8): 840-845 (in Chinese with English abstract) [4]Lei D-Y(雷东阳), Xie F-M(谢放鸣), Chen L-Y(陈立云). QTL mapping for grain appearance quality traits of advanced backcrossing introgression lines in rice. J Hunan Agricu Univ (Nat Sci)(湖南农业大学学报·自然科学版), 2009, 35(1): 1-4 (in Chinese with English abstract) [5]Yan C-J(严长杰), Liang G-H(梁国华), Chen F(陈峰), Li Xin(李欣), Tang S-Z(汤述翥), Yi C-D(裔传灯), Tian S(田舜), Lu J-F(陆驹飞), Gu M-H(顾铭洪). Mapping quantitative trait loci associated with rice grain shape based on an indica/japonica backcross population. Acta Genet Sin (遗传学报), 2003, 30(8): 711-716 (in Chinese with English abstract) [6]Zhang G-H(张光恒), Zhang G-P(张国平), Qian Q(钱前), Xu J-P(徐律平), Zeng D-L(曾大力), Teng S(滕胜), Bao J-S(包劲松). QTL analysis of grain shape traits in different environments. Chin J Rice Sci (中国水稻科学), 2004, 18(1): 16-22 (in Chinese with English abstract) [7]Wang B(汪斌), Lan T(兰涛), Wu W-R(吴为人). Identification of QTL underlying grain traits in rice using SSLP linkage map. Fujian J Agric Sci (福建农业学报), 2003, 18(1): 11-15 (in Chinese with English abstract) [8]Li Z-F(李泽福), Wan J-M(万建民), Xia J-F(夏加发), Zhai H-Q(翟虎渠). Mapping quantitative trait loci underlying appearance quality of rice grains (Oryza sativa L.). Acta Genet Sin (遗传学报), 2003, 30(3): 251-259 (in Chinese with English abstract) [9]Tan Y-P(谭耀鹏), Li L-Z(李兰芝), Li P(李平), Wang L-X(王玲霞), Hu Z-L(胡中立). Quantitative trait loci for grain appearance traits of rice using a doubled haploid population. Mol Plant Breed (分子植物育种), 2005, 3(3): 314-322 (in Chinese with English abstract) [10]Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147-1162 [11]Xu H-S(徐华山), Sun Y-J(孙永建), Zhou H-J(周红菊), Yu S-B(余四斌). Development and characterization of contiguous segment substitution lines with background of an elite restorer line. Acta Agron Sin (作物学报), 2007, 33 (6): 979-986 (in Chinese with English abstract) [12]Ebitani T, Takeuchi Y, Nonoue Y, Yamamoto T, Takeuchi K, Yano M. Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar ‘Kasalath’ in a genetic background of japo- nica elite cultivar ‘Koshihikari’. Breed Sci, 2005, 55: 65-73 [13]Wan J-L(万建林), Zhai H-Q(翟虎渠), Wan J-M(万建民), Yasui H(安井秀), Yoshimura A(吉村淳). Mapping QTL for traits associated with resistance to ferrous iron toxicity in rice (Oryza sativa L.) using japonica chromosome segment substitution lines. Acta Genet Sin (遗传学报), 2003, 30(10): 893-898 (in Chinese with English abstract) [14]Zhang G Q, Zeng R Z, Zhang Z M, Ding X H, Li W T, Liu G M, He F H, Tulukdar A, Huang C F, Xi Z Y, Qin L J, Shi J Q, ZhaoF M, Feng M J, Shan Z L, Chen L, Guo X Q, Zhu H T, Lu Y G. The construction of a library of single segment substitution lines in rice (Oryza sativa L.). Rice Genet Newsl, 2004, 21: 85-87 [15]Xi Z Y, He F H, Zeng R Z, Zhang Z M, Ding X H, Li W T, Zhang G Q. Development of a wide population of chromosome single segment substitution lines (SSSL) in the genetic background of an elite cultivar in rice (Oryza sativa L.). Genome, 2006, 49: 476-484 [16]Zeng R-Z(曾瑞珍), Shi J-Q(施军琼), Huang C-F(黄朝锋), Zhang Z-M(张泽民), Ding X-H(丁效华), Li W-T(李文涛), Zhang G-Q(张桂权). Development of a series of single segment substitution lines in indica background of rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2006, 32(1): 88-95 (in Chinese with English abstract) [17]He F-H(何风华), Xi Z-Y(席章营), Zeng R-Z(曾瑞珍), Zhang G-Q(张桂权). Developing single segment substitution lines (SSSL) in rice (Oryza sativa L.) using advanced backcrosses and MAS. Acta Genet Sin (遗传学报), 2005, 32(8): 825-831 (in Chinese with English abstract) [18]Gur A, Zamir D. Unused natural variation can lift yield barriers in plant breeding. PLoS Biol, 2004, 2: 1610-1615 [19]Zhao F M, Zhu H T, Ding X H, Zeng R Z, Zhang Z M, Li W T, Zhang G Q. Detection of QTLs for important agronomic traits and analysis of their stabilities using SSSLs in rice. Agric Sci China, 2007, 6(7): 769-778 [20]Zhao F M, Liu G F, Zhu H T, Ding X H, Zeng R Z, Zhang Z M, Li W T, Zhang G Q. Unconditional and conditional QTL mapping for tiller numbers at various stages with single segment substitution lines in rice (Oryza sativa L.). Agric Sci China, 2008, 7(3): 257-265 [21]Zhao F M, Zhang G Q, Zeng R Z, Yang Z L, Zhu H T, Zhong B Q, Ling Y H, He G H. Additive effects and epistasis effects of QTL for plant height and its components using single segment substitution lines (SSSL) in rice. Acta Agron Sin (作物学报), 2009, 35(1): 48-56 [22]Liao C Y, Wu P, Hu B, Yi K K. Effects of genetic background and environment on QTL and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet, 2001, 103: 104-111 [23]Jiang L-R(江良荣), Wang W(王伟), Huang J-X(黄建勋), Huang R-Y(黄荣裕), Zheng J-S(郑景生), Huang Y-M(黄育民), Wang H-C(王侯聪). Analysis of epistatic and QE interaction effects of QTL for grain shape in rice. Mol Plant Breed (分子植物育种), 2009, 7(4): 690-698 (in Chinese with English abstract) [24]Eshed Y, Zamir D. Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics, 1996, 143: 1807-1817 [25]Paterson A H, Deverna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes in an interspecies cross of tomato. Genetics, 1990, 124: 735-742 [26]Zeng R-Z(曾瑞珍), Tulukdar A, Liu F(刘芳), Zhang G-Q(张桂权). Mapping of the QTL controlling grain shape in rice using single segment substitution lines. Sci Agric Sin (中国农业科学), 2006, 39(4): 647-654 (in Chinese with English abstract) [27]Wan X Y, Wan J M, Jiang L, Wang J K, Zhai H Q, Weng J F, Wang H L, Lei C L, Wang J L, Zhang X, Cheng Z J, Guo X P. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet, 2006, 112: 1258-1270 [28]Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164-1171 [29]Guo Y-M(郭咏梅), Mu P(穆平), Liu J-F(刘家富), Li Z-C(李自超), Lu Y-X(卢义宣). Correlation analysis and QTL mapping of grain shape and grain weight in rice under upland and lowland environments. Acta Agron Sin (作物学报), 2007, 33(1): 50-56 (in Chinese with English abstract) [30]Chen B-X(陈冰嬬), Shi Y-Y(石英尧), Cui J-T(崔金腾), Qian Y-L(钱益亮), Liu H-Y(刘海燕), Zhang L-K(张力科), Wang H(王辉), Gao Y-M(高用明), Zhu L-H(朱苓华), Li Z-K(黎志康). QTL detection of grain size and shape with BC2F2 advanced backcross population of rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2008, 34(8): 1299-1307 (in Chinese with English abstract) [31]Zhu W-Y(朱文银), Wang C-L(王才林), Yang L-Q(杨连群). Analysis of substituted segments in five advanced backcross substitution lines in an indica background in rice (Oryza sativa). Chin Bull Bot (植物学报), 2009, 44(6): 666-672 (in Chinese with English abstract) [32]Rabiei B, Valizadeh M, Ghareyazie B, Moghaddam M, Ali A J. Identification of QTLs for rice grain size and shape of iranian cultivars using SSR markers. Euphytica, 2004, 137: 325-332 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|