欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (03): 529-536.doi: 10.3724/SP.J.1006.2011.00529

• 耕作栽培·生理生化 • 上一篇    下一篇

六个不同产量玉米品种籽粒淀粉积累及相关酶活性的比较

左振朋1,田凤龙1,**,姜朋1,王婧1,马登超2,马强1,李栋1,孙庆泉1,﹡,董树亭1   

  1. 1山东农业大学农学院/作物生物学国家重点实验室 / 山东省作物生物学重点实验室,山东泰安 271018;2山东省济宁市农业科学研究院,山东济宁 272131
  • 收稿日期:2010-07-07 修回日期:2010-09-16 出版日期:2011-03-12 网络出版日期:2010-12-15
  • 通讯作者: 孙庆泉, E-mail: qqsun18@163.com
  • 基金资助:

    本研究由山东省优秀中青年科学家奖励基金(2005BS06010),国家重点基础研究发展计划(973计划)项目(2006CB101700),山东省良种工程产业化项目(鲁农粮种字[2008]6号),作物生物学国家重点实验室开放课题(200704)和山东农业大学青年科技创新基金资助。

Comparison of Kernel Starch Accumulation and Related Enzyme Activities among Six Maize Cultivars of Different Yield Types

ZUO Zhen-Peng1,TIAN Feng-Long1,**,JIANG Peng1,WANG Jing1,MA Deng-Chao2,MA Qiang1,LI Dong1,SUN Qing-Quan1,*,DONG Shu-Ting1   

  1. 1Agronomy College of Shandong Agricultural University / National Key Laboratory of Crop Biology / Shandong Key Laboratory of Crop Biology, Tai’an 271018, China; 2 Jining Agricultural Science Institute, Ji’ning 272131, China
  • Received:2010-07-07 Revised:2010-09-16 Published:2011-03-12 Published online:2010-12-15
  • Contact: 孙庆泉, E-mail: qqsun18@163.com

摘要: 以6个玉米品种为试材,比较研究了不同产量品种的籽粒淀粉积累和淀粉合成相关酶活性的差异。结果表明,蔗糖合酶(SS)、UDPG焦磷酸化酶(UGPase)和淀粉分支酶(SBE)是玉米淀粉合成的关键酶,较高的SS、UGPase和SBE活性利于淀粉的积累和粒重的提高。低产品种直链淀粉积累的时间(30 d)短于中产(40 d)和高产品种(50 d以上);低产品种支链淀粉的积累在籽粒充实前期(授粉后20 d)慢于中产和高产品种,但后期差异变小;低产品种籽粒SS活性在授粉后10~30 d高于中产和高产品种,但在授粉30 d后迅速下降且降幅大于高产品种;低产品种UGPase活性峰值出现在授粉后20 d,中产和高产品种则出现在授粉后40 d,且低产品种的UGPase活性在籽粒充实后期明显低于中产和高产品种;低产品种的SBE活性在籽粒充实后期(授粉后30~50 d)明显低于中产和高产品种,而中产品种又低于高产品种,低产、中产和高产品种的SBE活性降幅分别为72.44%、44.54%和30.21%。高产和中产品种籽粒可溶性淀粉合酶(SSS)活性呈“N”形曲线变化,并于授粉后30 d出现第一个峰值,而低产品种为单峰曲线;低产品种籽粒ADPG焦磷酸化酶(ADPGPPase)活性高于中产和高产品种;在籽粒充实全期,3个产量品种淀粉脱分支酶(DBE)活性均迅速下降,不同产量品种类型间差异不显著。

关键词: 玉米, 产量, 籽粒, 淀粉积累, 酶活性

Abstract: Six maize cultivars were used to study the difference of the related enzyme activities in kernel starch accumulation and starch synthesis among different yield cultivars. Sucrose synthase(SS), UDPG pyrophosphorylase (UGPase) and starch branching enzyme(SBE) were the key enzymes in maize starch synthesis. High activities of SS, UGPase and SBE were beneficial to the accumulation of starch and the improvement of kernel weight. The time of amylose accumulation in low yield cultivars(LYV) (30 d) was shorter than that in middle yield cultivars(MYV) (40 d) and high yield cultivars(HYV) (>50 d). Amylopectin accumulation was slower in LYV than in MYV and HYV during the earlier stage of kernel-filling, but the difference among them became smaller during the later stage. SS activity in LYV kernel was higher than that in MYV and HYV during 10–30 d after pollination, but decreased rapidly at 30 days later after pollination and had larger decreasing range than that in HYV. The peak of UGPase activity appeared on the 20th day after pollination in LYV, while on the 40th day after pollination in MYV and HYV, and the activity in LYV was obviously lower than that in MYV and HYV during the later stage of kernel-filling stage. The SBE activity during the later stage of kernel-filling (30–50 d after pollination) was HYV>MYV>LYV, and the decreasing range was 72.44%(LYV), 44.54%(MYV), and 30.21%(HYV). The activity of soluble starch synthase (SSS) in MYV and HYV showed “N” type curve changes with the first peak on the 30th day after pollination, while it showed single peak curve in LYV. The activity of ADPG pyrophosphorylase (ADPGPPase) in LYV was higher than that in MYV and HYV. The activity of starch debranching enzyme (DBE) in the three yield types of cultivar all decreased rapidly during the whole process of kernel-filling, and the difference among different types was not obvious.

Key words: Maize, Yield type, Kernel, Starch accumulation, Enzyme activities

[1]Sun Q-Q(孙庆泉), Hu C-H(胡昌浩), Dong S-T(董树亭), Wang K-J(王空军). Advances of physiological characters studies about leaf source and kernel sink on cultivars in maize. J Shandong Agric Univ (山东农业大学学报), 1999, 30(4): 484–492 (in Chinese with English abstract)
[2]Jia S-F(贾士芳), Dong S-T(董树亭), Wang K-J(王空军), Zhang J-W(张吉旺), Li C-F(李从锋). Effect of shading on kernel quality at different stages from flowering to maturity in maize. Acta Agron Sin (作物学报), 2007, 33(12): 1960–1967 (in Chinese with English abstract)
[3]Sun Q-Q(孙庆泉), Wu Y-Q(吴元奇), Hu C-H(胡昌浩), Dong S-T(董树亭), Rong T-Z(荣廷昭), Zhang Y(张颖). Physiological activities and multiplication of endosperm cell at filling stage of kernels with different yield potential in maize. Acta Agron Sin (作物学报), 2005, 31(5): 612–618 (in Chinese with English abstract)
[4]Li S-C(李绍长), Lu J-H(陆嘉惠), Meng B-M(孟宝民). The relationship between endosperm cell differentiating and kernel filling. J Maize Sci (玉米科学), 2000, 8(4): 45–47 (in Chinese with English abstract)
[5]Emes M J, Bowsher C G, Hedley C, Burrell M M, Scrase-Field E S F, Tetlow I J. Starch synthesis and carbon partitioning in developing endosperm. J Exp Bot, 2003, 54: 569–575
[6]Liang J-S(梁建生), Cao X-Z(曹显祖), Xu S(徐生), Zhu Q-S(朱庆森), Song P(宋平). Studies on the relationship between the grain sink strength and it’s starch accumulation in rice. Acta Agron Sin (作物学报), 1994, 20(6): 685–691 (in Chinese with English abstract)
[7]Doehlert D C. Distribution of enzyme activities within the developing maize (Zea mays) kernel in relation to starch, oi1 and protein accumulation. Physiol Plantarum, 1990, 78: 560–567
[8]Stark D M, Timmerman K P, Barry G F, Preiss J, Kishore G M. Regulation of the a mount of starch in plant tissues by ADP glucose pyrophosphorylase. Science, 1992, 258: 287–292
[9]Singletary G W, Banisadr R, Keeling P L. Influence of gene dosage on carbohydrate synthesis and enzymatic activities in endosperm of starch deficient mutants of maize. Plant Physiol, 1997, 113: 293–304
[10]Lloyd J R, Springer F, Buleon A, Miller-Rober B, Willmitzer L, Kossmann J. The influence of alterations in ADP-glucose pyrophosphorylase activities on starch structure and composition in potato tubers. Planta, 1999, 209: 230–238
[11]Cao H, Imparl-Radosevich J, Guan H, Keeling P L, James M G, Myers A M. Identification of the soluble starch synthase activities of maize endosperm. Plant Physiol, 1999, 120: 205–215
[12]Myers A M, Morell M K, James M Q, Ball S G. Recent progress toward understanding biosynthesis of the amylopectin crysta1. Plant Physiol, 2000, 122: 989–997
[13]Wong K S, Kubo A, Jane J L, Harada K, Satoh H, Nakamura Y. Structures and properties of amylopectin and phytoglycogen in the endosperm of sugary-1 mutants of rice. J Cereal Sci, 2003, 37: 139–149
[14]Zhao B H, Zhang W J, Wang Z Q, Zhu Q S, Yang J C. Changes in activities of the key enzymes related to starch synthesis in rice grains during grain filling and their relationships with the filling fate and cooking quality. Agric Sci China, 2005, 4(1): 26–33
[15]Ma J, Ming D F, Ma W B, Xu F Y. Changes in starch accumulation and activity of enzymes associated with starch synthesis of rice at different N supplying dates. Agric Sin China, 2004, 3(10): 738–745
[16]Wang W-J(王文静). The relationship between source sink intensity and starch accumulation during grain filling period in two winter wheat cultivars with different spike types. Acta Agron Sin (作物学报), 2004, 30(9): 916–921 (in Chinese with English abstract)
[17]Mengel K, Judel G K. Effect of shading on nonstructural carbohydrates and their turnover in culms and leaves during the grain filling period of spring wheat. Crop Sci, 1982, 22: 958–962
[18]He Z-F(何照范). Grain Quality and Its Analysis Technology (粮油籽粒品质及其分析技术). Beijing: Agriculture Press, 1985. pp 274–294 (in Chinese)
[19]Zhang H Y, Dong S T, Gao R Q, Sun Q Q. Starch accumulation and enzyme activities associated with starch synthesis in maize kernels. Agric Sci China, 2007, 6(7): 808–815
[20]Wang X-Y(王晓燕), Dong S-T(董树亭), Gao R-Q(高荣岐), Zhang H-Y(张海艳). Endosperm cell proliferating and its relation to kernel weight in different types of maize. Acta Agric Boreal-Sin (华北农学报), 2006, 21(2): 23–26 (in Chinese with English abstract)
[21]Liu P(刘鹏), Hu C-H(胡昌浩), Dong S-T(董树亭), Wang K-J(王空军), Zhang J-W(张吉旺), Zhang B-R(张保仁). Comparison of enzymes activity associated with sucrose metabolism in the developing kernels between sweet corn and normal corn. Sci Agric Sin (中国农业科学), 2005, 38(1): 52–58 (in Chinese with English abstract)
[22]Pinto. Influence of endosperm cell number on kernel size and weight in maize. Dissertation Abstracts International. Sec B. Sciences and Engineering, 1986, 46(11): 3652–3653
[23]Cheng F-M(程方民), Jiang D-A(蒋德安), Wu P(吴平), Shi C-H(石春海). The dynamic change of starch synthesis enzymes during the kernel filling stage and effects of temperature upon it. Acta Agron Sin (作物学报), 2001, 27(2): 201–206 (in Chinese with English abstract)
[24]Douglas C D, Tsung M K, Frederick C F. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize. Plant Physiol, 1988, 86: 1013–1019
[25]Dong S-T(董树亭), Wang K-J(王空军), Hu C-H(胡昌浩). Developme nt of canopy apparent photosynthesis among maize varieties from different eras. Acta Agron Sin (作物学报), 2000, 26(2): 200–204 (in Chinese with English abstract)
[26]Bhattaeharyya M K, Smith A M, Ellis T H N, Hedley C, Martin C. The wrinkled seed character of pea described by Mendel is caused by a transposon like insertion in a gene encoding starch-branching enzyme. Cell, 1990, 60: 115–122
[27]Hardy R, Mohammad-Reza H, Ulrich W, Hans W. Antisenseinhibition of ADP-glucose pyrophosphorylase in Vicia narbonensis seeds increases soluble sugars and leads to higher water and nitrogen uptake. Planta, 2002, 214: 954–964
[28]Zuo Z-P(左振朋), Wang J(王婧), Dong L-H(董鲁浩), Ma D-C(马登超), Sun Q-Q(孙庆泉), Dong S-T(董树亭). Comparison of multiplication of endosperm cell and physiological activity in developing kernels among normal corn, glutinous corn and pop corn. Acta Agron Sin (作物学报), 2010, 36(4): 630–636 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[8] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[9] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[10] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[11] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[12] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[13] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[14] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[15] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!