欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (03): 521-528.doi: 10.3724/SP.J.1006.2011.00521

• 耕作栽培·生理生化 • 上一篇    下一篇

干旱胁迫对玉米苗期生长和光合特性的影响

张仁和,薛吉全*,浦军,赵兵,张兴华,郑友军,卜令铎   

  1. 西北农林科技大学农学院 / 黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西杨凌712100
  • 收稿日期:2010-09-27 修回日期:2010-12-08 出版日期:2011-03-12 网络出版日期:2011-01-17
  • 通讯作者: 薛吉全, E-mail: xjq2934@yahoo.com.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118604),国家自然科学基金项目(30971722)和陕西省自然科学基金项目(2010JM3002)资助。

Influence of Drought Stress on Plant Growth and Photosynthetic Traits in Maize Seedings

ZHANG Ren-He,XUE Ji-Quan*,PU Jun,ZHAO Bing,ZHANG Xing-Hua,ZHENG You-Jun,BU Ling-Duo   

  1. College of Agronomy, Northwest A&F University / State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Yangling 712100, China
  • Received:2010-09-27 Revised:2010-12-08 Published:2011-03-12 Published online:2011-01-17
  • Contact: 薛吉全, E-mail: xjq2934@yahoo.com.cn

摘要: 以2个不同抗旱性玉米品种郑单958 (抗旱性强)和陕单902 (抗旱性弱)为材料,采用盆栽控水试验,设置轻度干旱,中度干旱,重度干旱和正常灌水处理,研究了干旱胁迫对2个玉米品种植株生长、气体交换和叶绿素荧光参数的影响。结果显示,干旱胁迫抑制2个玉米品种植株生长和相对生长速率,导致整株生物量显著下降。随着干旱胁迫程度加剧,叶片最大净光合速率(Pnmax)、表观量子效率(AQY)、光饱和点(LSP)、气孔导度(Gs)、气孔限制值(Ls)、最大电子传递速率(ETRm)、光能利用效率(α)、光系统II的实际量子产量(ΦPSII)和光化学猝灭系数(qP)均下降,而胞间CO2浓度(Ci),光补偿点(LCP)和非光化学猝灭系数(qN)均升高。可见,干旱胁迫下叶片光合能力和电子传递速率降低是2个玉米品种生物量减少的主要因素。但郑单958变化幅度小于陕单902,表明郑单958植株生长发育和光合特性比陕单902受干旱胁迫的影响小,较高的电子传递速率、较强的光能转化能力和较大的相对生长速率是郑单958适应干旱环境的重要生理特性。

关键词: 玉米, 干旱胁迫, 光响应, 叶绿素荧光参数, 植株生长

Abstract: The responses of plant growth, gas exchange and chlorophyll fluorescence parameters were studied in two different maize hybrids Zhengdan 958 (drought resistant) and Shaandan 902 (drought-sensitive) under three different drought stresses (mild drought, moderate drought, severe drought) and normal irrigation in a pot experiment. The results showed that drought stress inhibited plant growth and relative growth rate in the two hybrids, resulting in a significant decline in biomass. With the increasing of drought stress, the maximum leaf net photosynthetic rate (Pnmax), apparent quantum efficiency (AQY), light saturation point (LSP), stomatal conductance (Gs), stomatal limitation (Ls), maximum electron transport rate (ETRm), photosynthetic efficiency (α), PSII actual quantum yield (ΦPSII) and photochemical quenching (qP) decreased, while the intercellular CO2 concentration (Ci), light compensation point (LCP) and non-photochemical quenching (qN) increased. But the change extents of all parameters were smaller in Zhengdan 958 than in Shaandan902. This finding indicated that drought stress could significantly decrease the biomass of two maize varieties, possibly caused by reduction in the photosynthetic efficiency of plants. The drought stress damaging effects on plant growth and photosynthesis were minimal on the Zhengdan 958 compared to Shaandan 902. Under drought stress the Zhengdan 958 maintained higher photosynthetic efficiency, stronger light energy transfer capacity and greater relative growth rate that may be the major physiological traits in the adaptive capacity to drought conditions.

Key words: Maize, Drought stress, Light responses of photosynthesis, Chlorophyll fluorescence parameters, Plant growth

[1]Campos H, Cooper M, Habben J E, Edmeades G O, Schussler J R. Improving drought tolerance in maize: a view from industry. Field Crops Res, 2004, 90: 19–34
[2]Bu L-D(卜令铎), Zhang R-H(张仁和), Chang Y(常宇), Xue J-Q(薛吉全), Han M-M(韩苗苗). Responses of water stress to photosynthetic characteristics of the maize leaf in the seeding. Acta Ecol Sin (生态学报), 2010, 30(5): 1184–1192 (in Chinese with English abstract)
[3]Xu D-Q(许大全). Photosynthetic Efficiency (光合作用效率). Shanghai: Shanghai Scientific and Technical Publishers, 2002. pp 821–834 (in Chinese)
[4]Bai L P, Sui F G, Ge T D, Sun Z H, Lu Y Y, Zhou G S. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. Pedosphere, 2006, 16(3): 326–332
[5]Nielsen D C, Vigil M F, Benjamin J G. The variable response of dry land corn yield to soil water content at planting. Agric Water Manage, 2009, 96: 330–336
[6]Ge T-D(葛体达), Tuo F-G(隋方功), Bai L-P(白莉萍), Lü Y-Y(吕银燕), Zhou G-S(周广胜). Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize. Sci Agric Sin (中国农业科学), 2005, 38(5): 922–928 (in Chinese with English abstract)
[7]Zheng S-H(郑盛华), Yan C-R(严昌荣). The ecophysiological and morphological characteristics of maize in seedling stage under water stress. Acta Ecol Sin (生态学报), 2006, 26(4): 1138–1143 (in Chinese with English abstract)
[8]Jiang G-M(蒋高明). Plant Physioecology (植物生理生态学). Beijing: Higher Education Press, 2004. pp 24–28 (in Chinese)
[9]Efeoglu B, Ekmekci Y, Cicek N. Physiological responses of three maize cultivars to drought stress and recovery. South African Journal of Botany, 2009, 75: 34–42
[10]Levitt J. Responses of Plants to Environmental Stresses: Water, Radiation, Salt and Other Stresses, 2nd edn. New York: Academic Press, 1980. pp 25–280
[11]Ephrath J E. The effects of drought stress on leaf elongation, photosynthesis and transpiration rate in maize leaves. Photosynthetica, 1991, 25: 607–619
[12]Aroca R, Irigoyen J J, Sánchez-díaz M. Drought enhances maize chilling tolerance. II: Photosynthetic traits and protective mechanisms against oxidative stress. Physiol Plant, 2003, 117: 540–549
[13]Baker N R, Rosenqvist E. Application of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot, 2004, 55: 1607–1621
[14]Zhang S-R(张守仁). A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chin Bull Bot (植物学通报), 1999, 16(4): 444–448 (in Chinese with English abstract)
[15]Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res, 1986, 10: 51–62
[16]Guo J(郭江), Guo X-Y(郭新宇), Wang J-H(王纪华), Zhang F-L(张凤路). Characteristic parameters of light responses of corn varieties with different plant shapes. Acta Bot Boreali-Occident Sin (西北植物学报), 2005, 25(8): 1612–1617 (in Chinese with English abstract)
[17]Li G(李耕), Gao H-Y(高辉远), Zhao B(赵斌), Dong S-T(董树亭), Zhang J-W(张吉旺), Yang J-S(杨吉顺), Wang J-F(王敬锋), Liu P(刘鹏). Effects of drought stress on activity of photosynthesis in leaves of maize at grain filling stage. Acta Agron Sin (作物学报), 2009, 35(10): 1916–1922 (in Chinese with English abstract)
[18]Ding L, Wang K J, Jiang G M, Li Y G, Jiang C D, Liu M Z, Niu S L, Peng Y. Diurnal variation of gas exchange, chlorophyll fluorescence and xanthophylls cycle components of maize hybrids released in different years. Photosynthetica, 2006, 44: 26–31
[19]White A J, Critchley C. Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth Res, 1999, 59: 63–72
[20]Massacci A, Nabiv S M, Pietrosanti L, Nematov S K, Chernikova T N, Thor K, Leipner J. Response of photosynthesis apparatus of cotton to the onset of drought stress under field conditions by gas change analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem, 2008, 46: 189–195
[21]Zhang R-H(张仁和), Ma G-S(马国胜), Bu L-D(卜令铎), Shi J-T(史俊通), Xue J-Q(薛吉全). Appraisement and comprehensive evaluation of different genotype maize cultivars for drought resistance. Seed (种子), 2009, 28(10): 91–93 (in Chinese with English abstract)
[22]Leipner J, Stamo P, Sinsawat V, Fracheboud Y. Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environ Exp Bot, 2004, 52: 123–129
[23]Demmig-Adams B, Adams W W, Baker D H, Logan B A, Bowling D R, Verhoreven A S. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant, 1996, 98: 253–264
[24]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Ann Rev Plant Physiol, 1982, 33: 317–345
[25]Sharp R E, Poroyko V, Hejlek L G, Spollen W G, Springer G K, Bohnert H J, Nguyen H T. Root growth maintenance during water deficits: physiology to functional genomies. J Exp Bot, 2004, 55: 2343–2351
[26]Qi X-L(齐学礼), Hu L(胡琳), Dong H-B(董海滨), Zhang L(张磊), Wang G-S(王根松), Gao S(高崇), Xu W-G(许为钢). Characteristics of photosynthesis in different wheat cultivars under high light intensity and high temperature stresses. Acta Agron Sin (作物学报), 2009, 35(8): 1500–1507 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[13] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[14] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[15] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!