欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (04): 703-710.doi: 10.3724/SP.J.1006.2011.00703

• 耕作栽培·生理生化 • 上一篇    下一篇

吉林省不同年代育成水稻品种上三叶光合特性的变化

姜楠1,邸玉婷1,徐克章1,*,赵国臣1,2,凌凤楼1,武志海1,张治安1   

  1. 1吉林农业大学农学院,吉林长春130118;  2吉林省农业科学院水稻研究所,吉林长春130124
  • 收稿日期:2010-09-02 修回日期:2010-12-30 出版日期:2011-04-12 网络出版日期:2011-02-24
  • 基金资助:

    本研究由吉林省科学技术厅重点项目(20080201)和农业部跨越计划项目(200754)资助。

Changes of Photosynthetic Characteristics in Top Three Leaves of Rice (Oryza sativa L.) Cultivars in Released Different Years in Jilin Province

JIANG Nan1,DI Yu-Ting1,XU Ke-Zhang1,*,ZHAO Guo-Chen1,2, LING Feng-Lou1, WU Zhi-Hai1,ZHANG Zhi-An1   

  1. 1 Agronomy College, Jilin Agricultural University, Changchun 130118, China; 2 Rice Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130124, China
  • Received:2010-09-02 Revised:2010-12-30 Published:2011-04-12 Published online:2011-02-24

摘要: 为了解不同年代育成水稻品种上三叶光合特性的变化及其与产量的关系,以吉林省1958—2005年间育成的33个水稻品种为材料,研究了植株上三叶净光合速率(Pn)、光合能力及叶源量的变化。结果表明,抽穗期剑叶的Pn、光合能力和叶源量对植株的光合能力贡献最大,占单株总光合能力的42.45%,倒二叶占28.27%,倒三叶占15.69%。剑叶Pn、光合能力和叶源量的增加最小,倒二叶次之,倒三叶最大。相关分析表明,倒三叶的Pn、光合能力和叶源量与育成年代和产量呈显著正相关,剑叶和倒二叶的Pn、光合能力和叶源量与育成年代和产量的关系并没有达到显著水平。吉林省47年来水稻品种产量的遗传改良主要导致了植株倒三叶光合能力的显著提高,剑叶光合能力的变化并不大。

关键词: 水稻, 遗传改良, 上三叶, 光合能力

Abstract: In order to understand the changes of photosynthetic characteristics in top three leaves and its relationship with yield in the genetic improvement of rice, 33 typical japonica rice cultivars released from 1958 to 2005 were planted under field conditions. to determine net photosynthetic rate (Pn), photosynthetic capacity and leaf sources capacity (LSC) after heading stage. The result indicated that the Pn, photosynthetic capacity and LSC of flag-leaf at heading had the most contribution to plant photosynthetic capacity, which was account to 42.45%, followed by those of top 2nd leaf with 28.27% and those of top 3rd leaf with 15.69%. While, within 47 years genetic improvement of rice cultivars, the increase of Pn, photosynthetic capacity and LSC of the top 3rd leaf were the maximum, and those of flag-leaf was the minimum.The correlations of Pn, photosynthetic capacity and LSC of flag-leaf and top 2nd leaf with yield were not obvious enough to reach significant level after heading. The Pn of top 3rd leaf and the photosynthetic capacity of plant were significant positive correlation with yield at heading and 10 days after heading. The photosynthetic capacity and LSC of top 3rd leaf were highly significant positive correlation with yield after heading, and those of flag-leaf and top 2nd leaf were not. Our studies indicate that the significant increase of Pn, photosynthetic capacity and LSC in the top 3rd leaf is mainly resulted from the yield genetic improvement of rice cultivars for 47 years in Jilin province, but there has been no obvious change in photosynthetic capacity of flag-leaf.

Key words: Rice, Genetic improvement, Top three leaves, Photosynthetic capacity

[1]Zhao G-C(赵国臣), Guo X-M(郭唏明). Prospects of Jilin rice cultivation in 21 century. J Agric Sci Yanbian Univ (延边大学农学学报), 2000, 21(1): 63–65 (in Chinese with English abstract)
[2]Chen W-F(陈温福), Xu Z-J(徐正进), Zhang B-L(张龙步). Theories and methods of breeding japonica rice for super high yield. J Shenyang Agric Univ (沈阳农业大学学报), 2005, 36(1): 3–8 (in Chinese with English abstract)
[3]Wu Z-H(武志海), Xu K-Z(徐克章), Zhao Y-J(赵颖君), He X-L(何晓亮), Wang X-L(王晓玲), Ling F-L(凌凤楼). Changes of some agronomic traits in japonica rice varieties during forty-seven years of genetic improvement in Jilin province China. Chin J Rice Sci (中国水稻科学), 2007, 21(5): 507–512 (in Chinese with English abstract)
[4]Yuan J(袁江), Wang D-Y(王丹英), Ding Y-F(丁艳峰), Liao X-Y(廖西元), Zhang X-F(章秀福), Wang S-H(王绍华). Evolution characteristics of plant type during genetic improvement in early season indica rice. Chin J Rice Sci (中国水稻科学), 2009, 23(3): 277–281 (in Chinese with English abstract)
[5]Wan Z-B(万志兵), Hong D-L(洪德林), Chen H-T(程海涛), Guo Y-H(郭玉华). Comparison of plant type traits between new and old varieties in japonica rice (Oryza sativa L.). J Nanjing Agric Univ (南京农业大学学报), 2005, 28(1): 1–5 (in Chinese with English abstract)
[6]Yang W, Peng S B, Laza R C, Visperas R M, Dionisio-Sese M L. Grain yield and yield attributes of new plant type and hybrid rice. Crop Sci, 2007, 47: 1393–1400
[7]Yang J-C(杨建昌), Wang P(王朋), Liu L-J(刘立军), Wang Z-Q(王志琴), Zhu Q-S(朱庆森). Evolution characteristics of grain yield and plant type for mid-season indica rice cultivar. Acta Agron Sin (作物学报), 2006, 32(7): 945–955 (in Chinese with English abstract)
[8]Chen W-F(陈温福), Xu Z-J(徐正进), Zhang B-L(张龙步), Zhang W-Z(张文忠), Ma D-R(马殿荣). Theories and practices of breeding japonica rice for super high yield. Sci Agric Sin (中国农业科学), 2007, 40(5): 869–874 (in Chinese with English abstract)
[9]Peng S, Khush G S, Virk P, Tang Q, Zou Y. Progress in idotype breeding to increase rice yield potential. Field Crops Res, 2008, 108: 32–38
[10]Peng S, Cassman K G, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci, 1999, 39: 1552–1559
[11]Wu Z-H(武志海), Zhao G-C(赵国臣), Xu K-Z(徐克章), Di Y-T(邸玉婷), Jiang N(姜楠), Ling F-L(凌凤楼), Zhao Y-J(赵颖君). Changes in photosynthetic indexes of rice varieties during forty-seven years of genetic improvement in Jilin province, China. Chin J Rice Sci (中国水稻科学), 2009, 23(2): 165–171 (in Chinese with English abstract)
[12]Ishizuka Y. Physiology of the rice plant. Adv Agron, 1971, 23: 241–315
[13]Elmore C D. The paradox of no correlation between leaf photosynthetic rates and crop yields. In: Hesketh J D, Jones J W, eds. Predicting Photosynthesis for Ecosystem Models. Vol. II. Boca Raton, Fla.(USA): CRC Press, 1980. pp 155–167
[14]Evans L T, Dunstone R L. Some physiological aspects of evolution in wheat. Aust J Biol Sci, 1970, 23: 725–741
[15]Nelson C J, Asay K H, Horst G L. Genetic association between photosynthetic characteristics and yield: review of the evidence. Plant Physiol Biochem, 1988, 26: 543–554
[16]Moss D N. Studies on increasing photosynthesis in crop plants. In: Burris R H, Black C C, eds. CO2 Metabolism and Plant Productivity. Baltimore: University Park Press, 1976. p 31
[17]Cao S-Q(曹树青), Zhai H-Q(翟虎渠), Yang T-N(杨图南), Zhang R-X(张荣铣), Kuang T-Y(匡廷云). Studies on photosynthetic rate and function duration of rice germplasm resources. Chin J Rice Sci (中国水稻科学), 2001, 15(1): 29–34 (in Chinese with English abstract)
[18]Xu D-Q(许大全). Photosynthetic Efficiency (光合作用效率). Shanghai: Shanghai Scientific and Technical Publishers, 2002. pp 163–167 (in Chinese)
[19]Xu D-Q(许大全), Shen R-G(沈允钢). Advances in Research on Crop Physiology with Respect to High Yield and Efficiency (作物高产高效生理学研究进展). Beijing: Science Press, 1994. pp 17–23 (in Chinese)
[20]Su Z-F(苏祖芳), Wang H-B(王辉斌), Du Y-L(杜永林), Zhang Y-J(张亚洁), Ji C-M(季春梅), Zhou P-N(周培南). Relationship between population quality and yield formation at middle growth stage in rice. Sci Agric Sin (中国农业科学), 1998, 31(5): 19–25 (in Chinese with English abstract)
[21]Yang J-C(杨建昌), Zhu Q-S(朱庆森), Cao X-Z(曹显祖). The effects of the structure and photosynthetic characters of rice canopy on the yield formation in rice plant. Sci Agric Sin (中国农业科学), 1992, 25(4): 7–14 (in Chinese with English abstract)
[22]Ling Q-H(凌启鸿), Zhang H-C(张洪程), Cai J-Z(蔡建中), Su Z-F(苏祖芳), Ling L(凌励). Investigation on the population quality of high yield and its optimizing control program in rice. Sci Agric Sin (中国农业科学), 1993, 26(6): 1–11 (in Chinese with English abstract)
[23]Gladun I V, Karpov E A. Distribution of assimilates from the flag leaf of rice during the reproductive period of development. Russ J Plant Physiol, 1993, 40: 215–219
[24]Zhang R-X(张荣铣), Liu X-Z(刘晓忠), Fang Z-W(方志伟), Xuan Y-N(宣亚南), Yan J-Y(颜景义), Zheng Y-F(郑有飞), Yang Z-M(杨志敏). The capacity of photosynthetic assimilation of carbon after leaf expansion in wheat-an estimation of leaf source capacity (LSC). Sci Agric Sin (中国农业科学), 1997, 30(1): 84–91 (in Chinese with English abstract)
[25]Khush G S. Prospects of and approach to increasing the genetic yield potential of rice. In: Evenson R E, Herdt R W, Hossain M, eds. Rice Research in Asia, Progress and Priorities. Wallingford, UK: CAB International and IRRI, 1996. pp 59–71
[26]Yang S-R(杨守仁), Zhang L-B(张龙步), Chen W-F(陈温福), Xu Z-J(徐正进), Wang J-M(王进民). Theories and methods of rice breeding for maximum yield. Chin J Rice Sci (中国水稻科学), 1996, 10(2): 115–120 (in Chinese with English abstract)
[27]Yuan L-P(袁隆平). Hybrid Rice (杂交水稻). Changsha: Hunan Science & Technology Press, 1986 (in Chinese)
[28]Liu J-F(刘建丰), Yuan L-P(袁隆平), Deng Q-Y(邓启云), Chen L-Y(陈立云), Cai Y-D(蔡义东). A study on characteristics of photosynthesis in super high-yielding hybrid rice. Sci Agric Sin (中国农业科学), 2005, 38(2): 258–264 (in Chinese with English abstract)
[29]Ma W-B(马文波), Ma J(马均), Ming D-F(明东风), Xu F-Y(许凤英), Yan Z-B(严志彬), Sun X-H(孙晓辉). Studies on the photosynthetic characteristics of the flag leaf of different panicle weight types of rice. Acta Agron Sin (作物学报), 2003, 29(2): 236–240 (in Chinese with English abstract)
[30]Yang J C, Peng S B, Zhang Z J, Wang Z Q, Visperas R M, Zhu Q S. Grain and dry matter yields and partitioning of assimilates in japonica/indica hybrid rice. Crop Sci, 2002, 42: 766–772
[31] Sasaki H, Ishii R. Cultivar differences in leaf photosynthesis of rice bred in Japan. Photosynthesis Res, 1992, 32: 139–146
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!