欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (05): 772-777.doi: 10.3724/SP.J.1006.2011.00772

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

全基因组分析玉米MuDR转座因子插入突变体库

冯静1,傅学乾1,王婷婷2,陶勇生2,高友军1,*,郑用琏1   

  1. 1华中农业大学作物遗传改良国家重点实验室,湖北武汉430070;2河北农业大学作物遗传改良国家重点实验室河北实验基地,河北保定071000
  • 收稿日期:2010-10-23 修回日期:2011-03-08 出版日期:2011-05-12 网络出版日期:2011-03-24
  • 基金资助:

    This work was supported by the grants of “863” High-tech Program (No. 2006AA10A106), the China National Fundamental Fund of Personnel Training (No. J0730649) and partly supported by the open funds of the National Key Laboratory of Crop Genetic Improvement.

Genome-wide Analysis of MuDR-related Transposable Elements Insertion Population in Maize

FENG Jing1,FU Xue-Qian1,WANG Ting-Ting2,TAO Yong-Sheng2,GAO You-Jun1,*,ZHENG Yong-Lian1   

  1. 1 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
    2 Hebei Research Station of National Key Laboratory of Crop Genetic Improvement, Agricultural University of Hebei, Baoding 071000, China
  • Received:2010-10-23 Revised:2011-03-08 Published:2011-05-12 Published online:2011-03-24
  • Supported by:

    This work was supported by the grants of “863” High-tech Program (No. 2006AA10A106), the China National Fundamental Fund of Personnel Training (No. J0730649) and partly supported by the open funds of the National Key Laboratory of Crop Genetic Improvement.

摘要: 在功能基因组研究中,插入诱变被广泛用于基因敲除。玉米Mutator转座子因其具有较高的转座活性常被用于构建大型玉米插入突变体库。本研究利用具有活性MuDR因子的玉米材料与优良玉米自交系Z31杂交,获得1 000个M1单株,自交构建M2群体,并研究MuDR因子在基因组中插入位点特性。利用优化的MuTAIL-PCR方法分离出695条MuDR插入位点侧翼序列,经初步生物信息学分析得到374条非冗余的插入位点,其中的298条序列能够被定位在玉米基因组物理图谱单个位点上。实验结果揭示了MuDR因子插入的一些特性:在10条染色体上随机分布,偏向于插入到基因序列中,并在某些功能基因中有明显插入偏好。

关键词: 玉米, Mutator转座子, MuDR因子, 侧翼序列, 插入位点, MuTAIL-PCR

Abstract: Insertional mutagenesis has now been widely used to knockout genes for functional genomics. The maize Mutator transposons hold an advantage of high activity to construct large mutant libraries. In this study, a MuDR line was used to cross with an elite Chinese maize inbred line Z31. A total of 1000 M1 individuals were planted and self-pollinated to generatetheir M2 families. Experiments were conducted to investigate the insertion specificity of MuDR related transposable elements. Six hundred and ninety-five MuDR inserted flanking sequences were isolated with a modified MuTAIL-PCR method and analyzedwith bioinformatics. Three hundred and seventy-four non-redundant insertion sites were identified and 298 of them were mapped to a single locus on the integrated maize map. The results revealed some prominent features of the MuDR-related insertions of maize: random distribution across the 10 chromosomes, preferential insertion into genic sequence and favoring some classes of functional genes.

Key words: Zea mays, Mutator (Mu) transposons, MuDR elements, Flanking sequence, Insertion sites, MuTAIL-PCR

[1]Carpenter A E, Sabatini D M. Systematic genome-wide screens of gene function. Genetics, 2004, 5: 11–12
[2]Alonso J M, Stepanova A N, Leisse T J, Kim C J, Chen H M, Shinn P, Stevenson D K, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers C C, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter D E, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby W L, Berry C C, Ecker J R. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 301: 653–657
[3]Rosso M G, Y Li, Strizho N, Reiss B, Dekker K, Weisshaar B. An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol, 2003, 53: 247–259
[4]An G H, Lee S, Kim S H, Kim S R. Molecular genetics using T-DNA in rice. Plant Cell Physiol, 2005, 46: 14–22
[5]Yazaki J, Kojima K, Suzuki K, Kishimoto N, Kikuchi S. The Rice PIPELINE: a unification tool for plant functional genomics. Nucl Acids Res, 2004, 32: D383–D387
[6]Zhang J, Guo D, Chang Y X, You C J, Li X W, Dai X X, Weng Q J, Zhang J W, Chen G X, Li X H, Liu H F, Han B, Zhang Q F, Wu C Y. Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13 804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant J, 2007, 49: 947–959
[7]Droc G, Perin C, Fromentin S, Larmande P, OryGenesD B. 2008 update: database interoperability for functional genomics of rice. Nucl Acids Res, 2009, 37: D992–D995
[8]Lunde C F, Morrow D J, Roy L M, Walbot V. Progress in maize gene discovery: a project update. Funct Integr Genomics, 2003, 3: 25–32
[9]Settles A M, Holding D R, Tan B C, Latshaw S P, Liu J, Suzuki M, Li L, O'Brien B A, Fajardo D S, Wroclawska E, Tseung C, Lai J S, Hunter C T, Avigne W T, Baier J, Messing J, Hannah L C, Koch K E, Becraft P W, Larkins B A, McCarty D R. Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics, 2007, 8: 116
[10]McClintock B. Mutable loci in maize. Carnegie Inst Wash Year Book, 1948, 47: 155–169
[11]Liu W T, Gao Y J, Teng F, Shi Q, Zheng Y L. Construction and genetic analysis of mutator insertion mutant population in maize. Chin Sci Bull, 2006, 51: 2604–2610
[12]Walbot V. Saturation mutagenesis using maize transposons. Curr Opin Plant Biol, 2000, 3: 103–107
[13]Brutnell T P. Transposon taggging in maize. Funct Integr Genomics, 2002, 2: 4–12
[14]Dooner H K, Belachew R. Transposition pattern of the maize element Ac from the bz-m2 (Ac) allele. Genetics, 1989, 122: 447–457
[15]Brutnell T P, Conrad L J. Transposon tagging using Activator (Ac) in maize. Methods Mol Biol, 2003, 236: 157–176
[16]Cowperthwaite M, Park W, Xu Z N, Yan X H, Maurais S C, Dooner H K. Use of the transposon Ac as a gene-searching engine in the maize genome. Plant Cell, 2002, 14: 713–726
[17]Robertson D S. Characterization of a mutator system in maize. Mutation Res, 1978, 51: 21–28
[18]Lisch D. Mutator transposons. Trends Plant Sci, 2002, 7: 498–504
[19]Settles A M. Maize community resources for forward and reverse genetics. Maydica, 2005, 50: 405–411
[20]Kriz A L, Larkins B A. Molecular Genetic Approaches to Maize Improvement Biotechnology in Agriculture and Forestry, vol 63. Heidelberg: Springer-Verlag Berlin Heidelberg, 2009. pp 143–159
[21]Walbot V, Hulbert G N. MuDR/Mu Transposon of Maize. Washington, D C: Amer Soc Microbiology, 2002
[22]Bennetzen J L. The Mutator transposable element system of maize. Curr Top Microbiol Immunol, 1996, 204: 195–229
[23]Liu S, Yeh C T, Ji T, Ying K, Wu H, Tang H M, Fu Y, Nettleton D, Schnable P S. Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet, 2009, 5: e1000733
[24]Hershberger R J, Warren C A, Walbot V. Mutator activity in maize correlates with the presence and expression of the Mu transposable element Mu9. Proc Natl Acad Sci USA, 1991, 88: 10198–202
[25]Takumi S, Walbot V. Epigenetic silencing and unstable inheritance of MuDR activity monitored at four b22-mu alleles in maize (Zea mays L.). Genes Genet Syst, 2007, 82: 387–401
[26]Cresse A D, Hulbert S H, Brown W E, Lucas J R, Bennetzen J L. Mu1-related transposable elements of maize preferentially insert into low copy number DNA. Genetics, 1995, 140: 315–24
[27]Fernandes J, Dong Q F, Schneider B, Morrow D J, Nan G L, Brendel V, Walbot V. Genome-wide mutagenesis of Zea mays L. using RescueMu transposons. Genome Biol, 2004, 5: R82
[28]Settles A M, Latshaw S, McCarty D R. Molecular analysis of high-copy insertion sites in maize. Nucl Acids Res, 2004, 32: e54
[29]Frey M, Stettner C, Gierl A. A general method for gene isolation in tagging approaches: amplification of insertion mutagenised sites (AIMS). Plant J, 1998, 13: 717–721
[30]Liu Y G, Mitsukawa N, Oosumi T, Whittier R F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J, 1995, 8: 457–463
[31]Yi G, Luth D, Goddman T D, Lawrence C L, Becraft P W. High-throughput linkage of Mutator insertion sites in maize. Plant J, 2009, 58: 883–892
[32]Liu S Z, Dietrich C R, Schnable P S. DLA-based strategies for cloning insertion mutants: cloning the gl4 locus of maize using Mu transposon tagged alleles. Genetics, 2009, 183: 1215–1225
[33]Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25: 25–29
[34]Maere S, Heymans K, Kuiper M. BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 2005, 21: 3448–3449
[35]Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498–2504
[36]McCarty D R, Hattori T, Carson C B, Vasil V, Lazar M, Vasil I K. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell, 1991, 66: 895–905
[37]Porch T G, Tseung C W, Schmelz E A, Settles A M. The maize Viviparous10/Viviparous13 locus encodes the Cnx1 gene required for molybdenum cofactor biosynthesis. Plant J, 2006, 45: 250–263
[38]Tan B C, Schwartz S H, Zeevaart J A, McCarty D R. Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA, 1997, 94: 12235–12240
[39]Suzuki M, Settles A M, Tseung C W, Li Q B, Latshaw S, Wu S, Porch T G, Schmelz E A, James M G, McCarty D R. The maize viviparous15 locus encodes the molybdopterin synthase small subunit. Plant J, 2006, 45: 264–274
[40]Bensen R J, Johal G S, Crane V C, Tossberg J T, Schnable P S, Meeley R B, Briggs S P. Cloning and characterization of the maize An1 gene. Plant Cell, 1995, 7: 75–84
[41]May B P, Liu H, Vollbrecht E, Senior L, Rabinowicz P D, Roh D, Pan X, Stein, Freeling M, Alexander D, Martienssen R. Maize-targeted mutagenesis: a knockout resource for maize. Proc Natl Acad Sci USA, 2003, 100: 11541–11546
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!