欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (06): 1005-1011.doi: 10.3724/SP.J.1006.2011.01005

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

硅及其吸收基因Lsi1调节水稻耐UV-B辐射的作用

方长旬,王清水,余彦,黄力坤,吴杏春,林文雄*   

  1. 福建农林大学生命科学学院农业生态研究所,福建福州350002
  • 收稿日期:2010-12-08 修回日期:2011-03-08 出版日期:2011-06-12 网络出版日期:2011-04-12
  • 通讯作者: 林文雄, E-mail:wenxiong181@163.com, Tel: 0596-83737535
  • 基金资助:

    本研究由?国家自然科学基金项目(30971737),教育部高等学校博士点专项科研基金项目(20093515110009)和福建省自然科学基金项目(2009J01055)的资助。

Silicon and Its Uptaking Gene Lsi1 in Regulation of Rice UV-B Tolerance

FANG Chang-Xun,WANG Qing-Shui,YU Yan,HUANG Li-Kun,WU Xing-Chun,LIN Wen-Xiong*   

  1. Institute of Agroecology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
  • Received:2010-12-08 Revised:2011-03-08 Published:2011-06-12 Published online:2011-04-12
  • Contact: 林文雄, E-mail:wenxiong181@163.com, Tel: 0596-83737535

摘要: 硅能提高植物对生物和非生物胁迫的抗性,水稻是吸收硅较多的作物之一。本研究以UV-B耐性水稻Lemont和UV-B敏感水稻Dular及其硅吸收基因(Lsi1)的转基因水稻为材料,研究硅与水稻耐UV-B辐射的关系。结果发现,自然光照条件下,缺硅培养的UV-B耐性水稻Lemont和UV-B敏感水稻Dular叶片的苯丙氨酸解氨酶(Phenylalanine ammonia lyase, PAL)和光裂解酶(Photolyase, PL)基因的表达以及总酚、类黄酮的含量都分别低于加硅的处理; UV-B辐射后,上述指标在不同硅处理的两水稻中都增加和增强,但缺硅培养的水稻仍显著低于加硅培养的水稻。进一步分别以Lsi1被抑制、增强的两种转基因Lemont水稻,以及Lsi1增强的转基因Dular水稻为材料,采用加硅培养的方式对转基因水稻的上述指标进行研究,结果也发现,抑制水稻Lsi1基因表达,其叶片PALPL基因表达也下调,总酚、类黄酮含量降低,此结果与缺硅培养下的野生型植株相似; 增强表达Lsi1基因则结果相反。UV-B辐射后,上述指标也增强和增加,但在相同的水稻品种中仍表现为Lsi1被抑制的植株最低,Lsi1增强的植株最高。研究结果表明,通过调节水稻Lsi1能够改变水稻耐UV-B辐射的能力。

关键词: 硅基因, 水稻, 紫外线B

Abstract: Silicon (Si) has beneficial function in enhancing plant resistance to biotic and abiotic stresses. Rice is a typical Si-accumulating plant. In this research, UV-B tolerant rice accession Lemont, UV-B sensitivity rice Dualr and their low silicon rice gene 1 (Lsi1) transgenic lines were used to explore the relationships between silicon and rice UV-B tolerance. It was found that rice cultured in Si-deficiency solution had lower gene transcript levels of phenylalanine ammonia lyase (PAL), photolyase (PL), and lower contents of total phenolics and flavonoids in leaves than that in Si-containing solution. The same tendency was found in the case when the rice accessions were supplementarily exposed to UV-B radiation, although both gene expression level and antioxidants concentrations were increased. Further, Lsi1-suppressed or overexpressedtransgenic rice lines of Lemont, and Lsi1-overexpressed transgenic rice line of Dular were also detected in the same treatments. The results showed that gene transcript level of PAL and PL was increased in Lsi1-overexpressed transgenic line, but down-regulated in Lsi1-RNAi line of Lemont as compared with their wild types (WT) under normal light condition. The expression level of the two genes in all entries was enhanced after UV-B radiation treatment, and it was the highestin Lsi1-overexpressed line of Lemont, followed by their WT, and lowest in Lsi1-RNAi line. The same tendency was also found in the content of total phenolics and flavonoids. The similar results were further confirmed in the overexpression of Lsi1 in Dular.The findings suggested that rice UV-B tolerance could be effectively mediated by enhancing/inhibiting expression of Lsi1.

Key words: Silicon, Lsi1, Rice (Oryza sativa L.), Ultraviolet-B

[1]Ganguly A R, Steinhaeuser K, Erickson III D J, Branstetter M, Parish E S, Singh N, Drake J B, Buja L. Higher trends but larger uncertainty and geographic variability in 21st century temperature and heat waves. Proc Natl Acad Sci USA, 2009, 106: 15555–15559
[2]Blumthaler M, Ambach W. Indication of increasing solar ultraviolet-B radiation flux in alpine regions. Science, 1990, 248: 206–208
[3]Teramura A H, Ziska L H, Sztein A E. Changes in growth and photosynthetic capacity of rice with increased UV-B radiation. Plant Physiol, 1991, 83: 373–380
[4]Tevini M, Teramura A H. UV-B effects on terrestrial plants. Photochem Photobiol, 1989, 50: 479–487
[5]Caldwell M M, Flint S D. Stratospheric ozone reduction, solar UV-B radiation and terrestrial ecosystem. Climatic Change, 1994, 28: 375–394
[6]Taylor R M, Tobin A K, Bray C M. The effects of enhanced UV-B irradiation on DNA and repair in plant tissue. J Exp Bot, 1994, 45: 55
[7]Wu X-C(吴杏春), Lin W-X(林文雄), Guo Y-C(郭玉春), Ke Y-Q(柯玉琴), Liang Y-Y(梁义元), Chen F-Y(陈芳育). Effect of enhancing ultraviolet-B radiation on antioxidant systems in rice seedling leaves. Fujian J Agric Sci (福建农业学报), 2001, 16(3): 51–55 (in Chinese with English abstract)
[8]Tang L-N(唐莉娜), Lin W-X(林文雄), Wu X-C(吴杏春), Liang Y-Y(梁义元), Chen F-Y(陈芳育). Effects of enhanced ultraviolet-B radiation on growth development and yield formation in rice (Oryza sativa L.). Chin J Appl Ecol (应用生态学报), 2002, 13(10): 1278–1282 (in Chinese with English abstract)
[9]Alfas P, Asta B, Virgilijus B. Phenogenetic response of silver birch populations and half-sib families to elevated ozone and ultraviolet-B radiation at juvenile age. Environ Pollut, 2008, 156: 152–161
[10]Singh S K, Surabhi G K, Gao W, Reddy K R. Assessing genotypic variability of cowpea (Vigna unguiculata L. Walp.) to current and projected ultraviolet-B radiation. J Photochem Photobiol B, 2008, 93: 71–81
[11]Agrawal S B, Mishra S. Effects of supplemental ultraviolet-B and cadmium on growth, antioxidants and yield of Pisum sativum L. Ecotox Environ Safe, 2009, 72: 610–618
[12]Schreiner M, Krumbein A, Mewis I, Ulrichs C, Huyskens-Keil S. Short-term and moderate UV-B radiation effects on secondary plant metabolism in different organs of nasturtium (Tropaeolum majus L.). Innovat Food Sci Emerg Tech, 2009, 10: 93–96
[13]Caldwell M M, Bjorn L O, Bornman J F, Flint S D, Kulandaivelu G, Teramura A H, Tevini M. Effects of increased solar ultraviolet radiation on terrestrial ecosystem. J Photochem Photobiol B, 1998, 46: 40–52
[14]Li Y(李元), Yue M(岳明). Ultraviolet Radiation Ecology (紫外辐射生态学). Beijing: China Environmental Science Press, 2000. pp 114–116 (in Chinese)
[15]Nguyen T T, Michaud D, Cloutier C. A proteomic analysis of the aphid Macrosiphum euphorbiae under heat and radiation stress. Insect Biochem Mol Biol, 2009, 39: 20–30
[16]Ma J F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr, 2004, 50: 11–18
[17]Ma J F, Yamaji N. Silicon uptake and accumulation in higher plants. Trends Plant Sci, 2006, 11: 392–397
[18]Savant N K, Snyder G H, Datnoff L E. Silicon Management and Sustainable Rice Production. In: Sparks D L, ed. Advances in Agronomy, Vol 58. San Diego: Academic Press, 1997. pp 151–199
[19]Wu X-C(吴杏春), Lin W-X(林文雄), Huang Z-L(黄忠良). Influence of enhanced ultraviolet-B radiation on photosynthetic physiologies and ultrastructure of leaves in two different resistivity rice cultivars. Acta Ecol Sin (生态学报), 2007, 27(2): 554–564 (in Chinese with English abstract)
[20]Li W B, Shi X H, Wang H, Zhang F S. Effects of silicon on rice leaves resistance to ultraviolet-B. Acta Bot Sin, 2004, 46(6): 691–697
[21]Harborne J B, Williams C A. Advances in flavonoid research since 1992. Phytochemistry, 2000, 55: 481–504
[22]Xu C P, Natarajan S, Sullivana J H. Impact of solar ultraviolet-B radiation on the antioxidant defense system in soybean lines differing in flavonoid contents. Environ Exp Bot, 2008, 63: 39–48
[23]Ma J F, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M. A silicon transporter in rice. Nature, 2006, 440: 688–691
[24]Fang C X, Wu X C, Zhang H L, Jun X, Wu W X, Lin W X. UV-induced differential gene expression in rice cultivars analyzed by SSH. Plant Growth Regul, 2009, 59: 245–253
[25]Fang C X, Wang Q S, Yu Y, Li Q M, Zhang H L, Wu X C, Chen T, Lin W X. Suppression and overexpression of Lsi1 induce differential gene expression in rice under ultraviolet radiation. Plant Growth Regul, 2011, DOI: 10.1007/s10725-011-9569-y
[26]Yoshida S, Forno D A, Cock J H. Laboratory Manual for Physiological Studies of Rice, 3rd edn. Manila, the Philippines: International Rice Research Institute, 1976. pp 1–83
[27]Shen Y, Jin L, Xiao P, Lu Y, Bao J S. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color and grain size. J Cereal Sci, 2009, 49: 106–111
[28]Christos D. Role of nutrients in controlling plant diseases in sustainable agriculture: a review. Agron Sustain Dev, 2008, 28: 33–46
[29]Xu C P, Natarajan S, Sullivana J H. Impact of solar ultraviolet-B radiation on the antioxidant defense system in soybean lines differing in flavonoid contents. Environ Exp Bot, 2008, 63: 39–48
[30]Riquelme A, Wellmann E, Pinto M. Effects of ultraviolet-B radiation on common bean (Phaseolus vulgaris L.) plants grown under nitrogen deficiency. Environ Exp Bot, 2007, 60: 360–367
[31]Winkel-Shirley B. Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol, 2001, 126: 485–493
[32]Kimura Y, Tosa Y, Shimada S, Sogo R, Kusaba M, Sunaga T, Betsuyaku S, Eto Y, Nakayashiki H, Mayama S. OARE-1, a Ty1-copia retrotransposon in oat activated by abiotic and biotic stresses. Plant Cell Physiol, 2001, 42: 1345–1354
[33]Lee B K, Park M R, Srinivas B, Chun J C, Kwon I S, Chung I M, Yoo N H, Choi K G, Yun S J. Induction of phenylalanine ammonia-lyase gene expression by paraquat and stress-related hormones in Rehmannia glutinosa. Mol Cells, 2003, 16: 34–39
[34]Pang Q, Hays J B. UV-B inducible and temperature-sensitive photoreactivation of cyclobutane pyrimidine dimers in Arabidopsis thaliana. Plant Physiol, 1991, 95: 536–543
[35]Hidema J, Taguchi T, Ono T, Teranishi M, Yamamoto K, Kumagai T. Increase in CPD photolyase activity functions effectively to prevent growth inhibition caused by UVB radiation. Plant J, 2007, 50: 70–79
[36]Iwamatsu Y, Aoki C, Takahashi M, Teranishi M, Ding Y, Sun C, Kumagai T, Hidema J. UVB sensitivity and cyclobutane pyrimidine dimer (CPD) photolyase genotypes in cultivated and wild rice species. Photochem Photobiol Sci, 2008, 7: 311–320
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!