欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (01): 23-35.doi: 10.3724/SP.J.1006.2012.00023

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个控制水稻叶色白化转绿及多分蘖矮杆性状基因hw-1(t)的鉴定

郭涛**,黄宣**,黄永相,刘永柱,张建国,陈志强*,王慧*   

  1. 华南农业大学 / 国家植物航天育种工程技术研究中心, 广东广州510642
  • 收稿日期:2011-05-04 修回日期:2011-09-12 出版日期:2012-01-12 网络出版日期:2011-11-07
  • 通讯作者: 王慧, E-mail: wanghui@scau.edu.cn; 陈志强, E-mail: chenlin@scau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30771313)和国家科技支撑计划项目(2008BAD97B02)资助。

Characterizations of a Mutant Gene hw-1(t) for Green-revertible Albino, High Tillering and Dwarf in Rice (Oryza sativa L.)

GUO Tao**,HUANG Xuan**,HUANG Yong-Xiang,LIU Yong-Zhu,ZHANG Jian-Guo,CHEN Zhi-Qiang*,WANG Hui*   

  1. South China Agricultural University / National Engineering Research Center of Plant Space Breeding, Guangzhou 510642, China
  • Received:2011-05-04 Revised:2011-09-12 Published:2012-01-12 Published online:2011-11-07
  • Contact: 王慧, E-mail: wanghui@scau.edu.cn; 陈志强, E-mail: chenlin@scau.edu.cn

摘要: 通过空间诱变从光身稻品种Francis的M2群体中发现一株叶色白化转绿、多分蘖矮秆突变体hfa-1hfa-1在三叶期之前完全白化,随后转绿。白化转绿表型受生长发育和温度调控。亚细胞结构观察发现hfa-1叶绿体发育异常抑制叶绿素合成,造成光合效率降低,产生白化表型。hfa-1的多分蘖表型是由于高节位分蘖芽激活所致,初步鉴定与苗期叶片IAA (吲哚乙酸)含量无关。hfa-1的矮生性则由节间长度缩短所致,与苗期GA (赤霉素)的合成和信号传导无关。遗传分析表明hfa-1的白化转绿、多分蘖矮秆表型受单隐性核基因hw-1(t)控制。利用hfa-1与粳稻品种02428杂交获得的F2群体将hw-1(t)定位在水稻第4染色体长臂上两个InDel标记HW27和HW7间46.9 kb的物理距离内,该区域有13个阅读框架,其中LOC_Os04g57320编码IMMUTANTS蛋白,推测为hw-1(t)的候选基因。

关键词: 水稻, 白化转绿, 多分蘖矮秆, hw-1(t), 精细定位

Abstract: A rice (Oryza sativa L.) mutant hfa-1 exhibiting green-revertible albino, high-tillering dwarf was detected from a M2 population of an American variety Francis by space mutagenesis. hfa-1 displayed distinctive albino before 3rd leaf stage but finally turned to normal green after 3rd leaf stage, and the expression of this phenotype was conditionally controlled by development and temperature. Examining ultrastructure and measuring chlorophyll content indicated that hfa-1 showed albino due to abnormal development of chloroplast, which resulted in inhibiting chlorophyll synthesis and decreasing photosynthetic efficiency. Moreover, the increased tiller number of hfa-1 was ascribed to initiate more higher-order tiller buds. Further endogenous hormones analysis demonstrated that the enhanced tillering capacity of hfa-1 might not result from inhibiting the synthesis of IAA. In addition, the dwarfism of hfa-1 was caused by shortening internodes and was independent of biosynthesis and signal transduction of GA. Genetic analysis indicated that the phenotype of green-revertible albino, high-tillering dwarf in hfa-1 was controlled by a recessive nucleic gene, namely hw-1(t). Using a large F2 mapping population derived from a cross between hfa-1 and an japonica rice variety, 02428, hw-1(t) was fine mapped into a 46.9 kb of physical distance between two InDel markers, HW27 and HW7 on chromosome 4, where 13 open reading frames were predicted. In the mapping interval LOC_Os04g57320 encoded a IMMUTANTS protein, which was the most properly candidate gene of hw-1(t).

Key words: Rice (Oryza sativa L.), Green-revertible albino, High-tillering dwarf, hw-1(t), Fine mapping

[1]Gustafsson A. The plastid development in various types of chlorophyll mutations. Hereditas, 1942, 28: 483-492
[2]Tanya G F, Staehelin L A. Partial blocks in the early steps of the chlorophyll synthesis pathway: a common feature of chlorophyll b-deficient mutants. Physiol Plant, 1996, 97: 311-320
[3]Wu D-X(吴殿星), Shu Q-Y(舒庆尧), Xia Y-W(夏英武), Liu G-F(刘贵付). 60Co gamma-ray induced temperature-regulatory leaf color albino mutated gene expression mutant line in rice (Oryza sativa L.). Sci Agric Sin (中国农业科学), 1997, 30(3): 95-95 (in Chinese with English abstract)
[4]Zhao Y, Wang M L, Zhang Y Z, Du L F, Pan T. A chlorophyll-reduced seedling mutant in oilseed rape, Brassica napus, for utilization in F1 hybrid production. Plant Breed, 2000, 119: 131-135
[5]Gan S, Amasino R M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 1995, 270: 1986-1988
[6]Fambrini M, Castagna A, Vecchia F D. Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced PS II activity and low endogenous level of abscisic acid. Plant Sci, 2004, 167: 79-89
[7]Parks B M, Quail P H. Phytochrome-deficient hy1 and hy2 long hypocotyls mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell, 1991, 3: 1177-1186
[8]Singh U P, Prithiviraj B, Sarma B K. Development of Erysiphe pisi (powdery mildew) on normal and albino mutants of pea (Pisum sativum L.). J Phytopathol, 2000, 148: 591-595
[9]Xing S, Miao J, Li S, Qin G, Tang S, Li H, Gu H, Qu L J. Disruption of the 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) gene results in albino, dwarf and defects in trichome initiation and stomata closure in Arabidopsis. Cell Res, 2010, 20: 688-700
[10]Schwartz S H, Qin X, Zeevaart J A. Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes and enzymes. Plant Physiol, 2003, 131: 1591-1601
[11]Agrawal G K, Yamazak I M, Kobayash I M. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol, 2001, 125: 1248-1257
[12]Beale S I. Green genes gleaned. Trends Plant Sci, 2005, 10: 301-312
[13]Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M. Defect in non-yellow coloring 3, an alpha/beta hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J, 2009, 59: 940-952
[14]Terry M J, Kendrick R E. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato. Plant Physiol, 1999, 119: 143-152
[15]Chen G, Bi Y R, Li N. EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J, 2005, 41: 364-375
[16]Kushnir S, Babiychuk E, Storozhenko S, Davey M W, Papenbrock J, Rycke R D, Engler G, Stephan U W, Lange H, Kispal G, Lill R, Van M M. A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell, 2001, 13: 89-100
[17]Shu Q-Y(舒庆尧), Wu D-X(吴殿星), Xia Y-W(夏英武), Liu G-F(刘贵付). Study on greenism characteristics of greenable albino mutation line W25 of rice (Oryza sativa L.). J Zhejiang Agric Univ (浙江农业大学学报), 1996, 22(2): 219-220 (in Chinese with English abstract).
[18]Zhao H-J(赵海军), Wu D-X(吴殿型), Shu Q-Y(舒庆尧), Shen S-Q(沈圣泉), Ma C-X(马传喜). Breeding and characteristics of photo-thermo sensitive genic male sterile rice Yutu S Labeled with green-revertible albino leaf marker. Chin J Rice Sci (中国水稻科学), 2004, 18(6): 515-521 (in Chinese with an English abstract)
[19]Zhang Y(张毅), Lü J(吕俊), Li Y-F(李云峰), Yang K(杨昆), Shen F-C(沈福成), Zhang Q-L(张巧玲), Peng Q-L(彭其莲), Zhou Y-L(周亚林), He G-H(何光华). Effects of green-revertible albino gene on the agronomy traits and appearance quality in rice. Acta Agron Sin (作物学报), 2008, 34(2): 284-289 (in Chinese with an English abstract)
[20]Guo S-W(郭士伟), Wang Y-F(王永飞), Ma S-M(马三梅), Li X(李霞), Gao D-Y(高东迎). Genetic analysis and fine mapping of a green-revertible albino leaf mutant in rice. Chin J Rice Sci (中国水稻科学), 2011, 25(1): 95-98 (in Chinese with an English abstract)
[21]Shen S-Q(沈圣泉), Shu Q-Y(舒庆尧), Bao J-S(包劲松), Wu D-X(吴殿星), Cui H-R(崔海瑞), Xia Y-W(夏英武). Development of a greenable leaf colour mutant Baifeng A and its application in hybrid rice production. Chin J Rice Sci (中国水稻科学), 2004, 18(1): 34-38 (in Chinese with English abstract)
[22]Wu W(吴伟), Liu X(刘鑫), Shu X-L(舒小丽), Shu Q-Y(舒庆尧), Xia Y-W(夏英武), Wu D-X(吴殿星). Two-line hybrid rice mail sterile line ‘NHR111S’ with a marker of green-revertible albino leaves. J Nucl Agric Sci (核农学报), 2006, 20(2): 103-105 (in Chinese with English abstract)
[23]Li R-Q(李瑞清), Wu L-Q(武立权), Shu Q-Y(舒庆尧), Zhao H-J(赵海军), Wu D-X(吴殿星), Wang R-F(王荣富). Characterization of a new green-revertible mutant G9 of rice. J Nucl Agric Sci (核农学报), 2010, 24(5): 881-886 (in Chinese with English abstract)
[24]Fang X-T(房贤涛), Ma H-L(马洪丽), Zhao F-Y(赵福源), Zhang Q-Q(章清杞), Zhang S-B(张书标). Studied on the breeding application of six photo-thermo-sensitive genic male sterile line mutants with greenable albino leaf. Chin Agric Sci Bull (中国农学通报), 2011, 27(1): 45-51 (in Chinese with English abstract)
[25]Liu G-F(刘贵付), Shu Q-Y(舒庆尧), Xia Y-W(夏英武). Utilization of Greenable albino mutation lines of thermosensitive genic male sterile rice (Oryza sativa L. ssp indica). J Nucl Agric Sci (核农学报), 1996, 10(3): 129-132 (in Chinese with English abstract)
[26]Chen T, Zhang Y, Zhao L, Zhu Z, Lin J, Zhang S, Wang C. Physiological character and gene mapping in a new green- revertible albino mutant in rice. J Genet Genomics, 2007, 34: 331-338
[27]Chen T, Zhang Y, Zhao L, Zhu Z, Lin J, Zhang S, Wang C. Fine mapping and candidate gene analysis of a green-revertible albino gene gra(t) in rice. J Genet Genomics, 2009, 36: 117-123
[28]Xia J C, Wang Y P, Ma B T, Yin Z Q, Hao M, Kong D W, Li S G. Ultrastructure and gene mapping of the Albino mutant al12 in rice (Oryza sativa L.). Acta Genet Sin, 2006, 33: 1112-1119
[29]Ueguchi M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y. Rice dwarf mutant d1, which is defective in the a subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA, 2000, 97: 11639-11643
[30]Lanahan M B, Ho T H. Slender barley: A constitutive gibberellin-response mutant. Planta, 1988, 175: 107-114
[31]Dobrev P I, Kaminek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A, 2002, 950: 21-29
[32]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321-4325
[33]Shen Y J, Jiang H, Jin J P, Zhang Z B, Xi B, He Y Y, Wang G, Wang C, Qian L, Li X, Yu Q B, Liu H J, Chen D H, Gao J H, Huang H, Shi T L, Yang Z N. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol, 2004, 135: 1198-1205
[34]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregation analysis: a rapid method to detect markers in specific genomic regions by using segregation population. Proc Natl Acad Sci USA, 1991, 88: 9828-9832
[35]Takeda K. Internode elongation and dwarfism in some gramineous plants. Gamma Field Sym, 1977, 17: 1-18
[36]Wang G, Römheld V, Li C, Bangerth F. Involvement of auxin and CKs in boron deficiency induced changes in apicak dominance of pea plants. J Plant Physiol, 2006, 163: 591-600
[37]Ekamber K P, Kumar M. Hormonal regulation of tiller dynamics in differentially-tillering rice cultivars. Plant Growth Regul, 2007, 53: 215-223
[38]Wilhelm R. Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 501-531
[39]Fujioka S, Yokota T. Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol, 2003, 54: 137-164
[40]Mitsunaga S, Tashiro T, Yamaguchi J. Identification and characterization of gibberellins-insensitive mutants selected from among dwarf mutants of rice. Theor Appl Genet, 1994, 87: 705-712
[41]Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M. Defect in non-yellow coloring 3, an alpha/beta hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J, 2009, 59: 940-52
[42]Meskauskiene R, Nater M, Goslings D, Kessler F, Camp R, Klaus K. FLU: A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 2001, 98: 12826-12831
[43]Jeon J S, Lee S, Jung K H, Jun S H, Jeong D H, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han M J, Sung R J, Choi H S, Yu J H, Choi J H, Cho S Y, Cha S S, Kim S I, An G. T-DNA insertional mutagenesis for functional genomics in rice. Plant J, 2000, 22: 561-570
[44]Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell, 2003, 15: 1771-80
[45]Monde R A, Zito F, Olive J, Wollman F A, Stern D B. Post-transcriptional defects in tobacco chloroplast mutants lacking the cytochrome b6/f complex. Plant J, 2000, 21(1):61-72
[46]Kumar A M, Soll D. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol, 2000, 122: 49-55
[47]Xu Y Y, Jia J F, Wang B, Niu B T. Changes in isoenzymes and amino acids in forage and germination of the first post-flight generation of seeds of three legume species after space-flight. Grass Forage Sci, 1999, 54: 371-375
[48]Gomez-Roldan V, Fermas S, Brewer P B, Puech-Pagès V, Dun E A, Pillot J P, Letisse F, Matusova R, Danoun S, Portais J C, Bouwmeester H, Bécard G, Beveridge C A, Rameau C, Rochange S F. Strigolactone inhibition of shoot branching. Nature, 2008, 455: 189-194
[49]Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455: 195-200
[50]Xie X, Yoneyama K, Yoneyama K. The strigolactone story. Annu Rev Phytopathol. 2010, 48: 93-117
[51]Beveridge C A, Kyozuka J. New genes in the strigolactone-related shoot branching pathway. Curr Opin Plant Biol, 2010, 13: 34-39
[52]Bartley G E, Scolnik P A. Plant carotenoids: pigments for photoprotection, visual attraction, and human health. Plant Cell, 1995, 7: 1027-1038
[53]Tracewell C A, Vrettos J S, Bautista J A, Frank H A, Brudvig G W. Carotenoid photooxidation in photosystem II. Arch Biochem Biophys, 2001, 385: 61-69
[54]Wu D, Wright DA, Wetzel C, Voytas DF, Rodermel S. The IMMUTANS variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell, 1999, 11: 43-55
[55]Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M. Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell, 1999, 11: 57-68
[56]Aluru M, Yu F, Fu A, Rodermel S. Arabidopsis variegation mutants: new insights into chloroplast biogenesis. J Exp Bot, 2006, 57: 1871-1881
[57]Aluru M R, Rodermel S R. Control of chloroplast redox by the IMMUTANS terminal oxidase. Physiol Plant, 2004, 120: 4-11
[58]Josse E, Simkin A J, Gaffe J, Labourne A, Kuntz M, Carol P. A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol, 2000, 123: 1427-1436
[59]Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 2005, 435: 824-827
[60]Domagalska M A, Leyser O. Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol, 2011, 12: 211-221
[61]Arnon D I, Allen M B, Whatley F R. Photosynthesis by Isolated Chloroplasts. Nature, 1954, 174: 394-396
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!