作物学报 ›› 2012, Vol. 38 ›› Issue (01): 23-35.doi: 10.3724/SP.J.1006.2012.00023
郭涛**,黄宣**,黄永相,刘永柱,张建国,陈志强*,王慧*
GUO Tao**,HUANG Xuan**,HUANG Yong-Xiang,LIU Yong-Zhu,ZHANG Jian-Guo,CHEN Zhi-Qiang*,WANG Hui*
摘要: 通过空间诱变从光身稻品种Francis的M2群体中发现一株叶色白化转绿、多分蘖矮秆突变体hfa-1。hfa-1在三叶期之前完全白化,随后转绿。白化转绿表型受生长发育和温度调控。亚细胞结构观察发现hfa-1叶绿体发育异常抑制叶绿素合成,造成光合效率降低,产生白化表型。hfa-1的多分蘖表型是由于高节位分蘖芽激活所致,初步鉴定与苗期叶片IAA (吲哚乙酸)含量无关。hfa-1的矮生性则由节间长度缩短所致,与苗期GA (赤霉素)的合成和信号传导无关。遗传分析表明hfa-1的白化转绿、多分蘖矮秆表型受单隐性核基因hw-1(t)控制。利用hfa-1与粳稻品种02428杂交获得的F2群体将hw-1(t)定位在水稻第4染色体长臂上两个InDel标记HW27和HW7间46.9 kb的物理距离内,该区域有13个阅读框架,其中LOC_Os04g57320编码IMMUTANTS蛋白,推测为hw-1(t)的候选基因。
[1]Gustafsson A. The plastid development in various types of chlorophyll mutations. Hereditas, 1942, 28: 483-492 [2]Tanya G F, Staehelin L A. Partial blocks in the early steps of the chlorophyll synthesis pathway: a common feature of chlorophyll b-deficient mutants. Physiol Plant, 1996, 97: 311-320 [3]Wu D-X(吴殿星), Shu Q-Y(舒庆尧), Xia Y-W(夏英武), Liu G-F(刘贵付). 60Co gamma-ray induced temperature-regulatory leaf color albino mutated gene expression mutant line in rice (Oryza sativa L.). Sci Agric Sin (中国农业科学), 1997, 30(3): 95-95 (in Chinese with English abstract) [4]Zhao Y, Wang M L, Zhang Y Z, Du L F, Pan T. A chlorophyll-reduced seedling mutant in oilseed rape, Brassica napus, for utilization in F1 hybrid production. Plant Breed, 2000, 119: 131-135 [5]Gan S, Amasino R M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 1995, 270: 1986-1988 [6]Fambrini M, Castagna A, Vecchia F D. Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced PS II activity and low endogenous level of abscisic acid. Plant Sci, 2004, 167: 79-89 [7]Parks B M, Quail P H. Phytochrome-deficient hy1 and hy2 long hypocotyls mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell, 1991, 3: 1177-1186 [8]Singh U P, Prithiviraj B, Sarma B K. Development of Erysiphe pisi (powdery mildew) on normal and albino mutants of pea (Pisum sativum L.). J Phytopathol, 2000, 148: 591-595 [9]Xing S, Miao J, Li S, Qin G, Tang S, Li H, Gu H, Qu L J. Disruption of the 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) gene results in albino, dwarf and defects in trichome initiation and stomata closure in Arabidopsis. Cell Res, 2010, 20: 688-700 [10]Schwartz S H, Qin X, Zeevaart J A. Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes and enzymes. Plant Physiol, 2003, 131: 1591-1601 [11]Agrawal G K, Yamazak I M, Kobayash I M. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol, 2001, 125: 1248-1257 [12]Beale S I. Green genes gleaned. Trends Plant Sci, 2005, 10: 301-312 [13]Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M. Defect in non-yellow coloring 3, an alpha/beta hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J, 2009, 59: 940-952 [14]Terry M J, Kendrick R E. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea and yellow-green-2 mutants of tomato. Plant Physiol, 1999, 119: 143-152 [15]Chen G, Bi Y R, Li N. EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J, 2005, 41: 364-375 [16]Kushnir S, Babiychuk E, Storozhenko S, Davey M W, Papenbrock J, Rycke R D, Engler G, Stephan U W, Lange H, Kispal G, Lill R, Van M M. A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell, 2001, 13: 89-100 [17]Shu Q-Y(舒庆尧), Wu D-X(吴殿星), Xia Y-W(夏英武), Liu G-F(刘贵付). Study on greenism characteristics of greenable albino mutation line W25 of rice (Oryza sativa L.). J Zhejiang Agric Univ (浙江农业大学学报), 1996, 22(2): 219-220 (in Chinese with English abstract). [18]Zhao H-J(赵海军), Wu D-X(吴殿型), Shu Q-Y(舒庆尧), Shen S-Q(沈圣泉), Ma C-X(马传喜). Breeding and characteristics of photo-thermo sensitive genic male sterile rice Yutu S Labeled with green-revertible albino leaf marker. Chin J Rice Sci (中国水稻科学), 2004, 18(6): 515-521 (in Chinese with an English abstract) [19]Zhang Y(张毅), Lü J(吕俊), Li Y-F(李云峰), Yang K(杨昆), Shen F-C(沈福成), Zhang Q-L(张巧玲), Peng Q-L(彭其莲), Zhou Y-L(周亚林), He G-H(何光华). Effects of green-revertible albino gene on the agronomy traits and appearance quality in rice. Acta Agron Sin (作物学报), 2008, 34(2): 284-289 (in Chinese with an English abstract) [20]Guo S-W(郭士伟), Wang Y-F(王永飞), Ma S-M(马三梅), Li X(李霞), Gao D-Y(高东迎). Genetic analysis and fine mapping of a green-revertible albino leaf mutant in rice. Chin J Rice Sci (中国水稻科学), 2011, 25(1): 95-98 (in Chinese with an English abstract) [21]Shen S-Q(沈圣泉), Shu Q-Y(舒庆尧), Bao J-S(包劲松), Wu D-X(吴殿星), Cui H-R(崔海瑞), Xia Y-W(夏英武). Development of a greenable leaf colour mutant Baifeng A and its application in hybrid rice production. Chin J Rice Sci (中国水稻科学), 2004, 18(1): 34-38 (in Chinese with English abstract) [22]Wu W(吴伟), Liu X(刘鑫), Shu X-L(舒小丽), Shu Q-Y(舒庆尧), Xia Y-W(夏英武), Wu D-X(吴殿星). Two-line hybrid rice mail sterile line ‘NHR111S’ with a marker of green-revertible albino leaves. J Nucl Agric Sci (核农学报), 2006, 20(2): 103-105 (in Chinese with English abstract) [23]Li R-Q(李瑞清), Wu L-Q(武立权), Shu Q-Y(舒庆尧), Zhao H-J(赵海军), Wu D-X(吴殿星), Wang R-F(王荣富). Characterization of a new green-revertible mutant G9 of rice. J Nucl Agric Sci (核农学报), 2010, 24(5): 881-886 (in Chinese with English abstract) [24]Fang X-T(房贤涛), Ma H-L(马洪丽), Zhao F-Y(赵福源), Zhang Q-Q(章清杞), Zhang S-B(张书标). Studied on the breeding application of six photo-thermo-sensitive genic male sterile line mutants with greenable albino leaf. Chin Agric Sci Bull (中国农学通报), 2011, 27(1): 45-51 (in Chinese with English abstract) [25]Liu G-F(刘贵付), Shu Q-Y(舒庆尧), Xia Y-W(夏英武). Utilization of Greenable albino mutation lines of thermosensitive genic male sterile rice (Oryza sativa L. ssp indica). J Nucl Agric Sci (核农学报), 1996, 10(3): 129-132 (in Chinese with English abstract) [26]Chen T, Zhang Y, Zhao L, Zhu Z, Lin J, Zhang S, Wang C. Physiological character and gene mapping in a new green- revertible albino mutant in rice. J Genet Genomics, 2007, 34: 331-338 [27]Chen T, Zhang Y, Zhao L, Zhu Z, Lin J, Zhang S, Wang C. Fine mapping and candidate gene analysis of a green-revertible albino gene gra(t) in rice. J Genet Genomics, 2009, 36: 117-123 [28]Xia J C, Wang Y P, Ma B T, Yin Z Q, Hao M, Kong D W, Li S G. Ultrastructure and gene mapping of the Albino mutant al12 in rice (Oryza sativa L.). Acta Genet Sin, 2006, 33: 1112-1119 [29]Ueguchi M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y. Rice dwarf mutant d1, which is defective in the a subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA, 2000, 97: 11639-11643 [30]Lanahan M B, Ho T H. Slender barley: A constitutive gibberellin-response mutant. Planta, 1988, 175: 107-114 [31]Dobrev P I, Kaminek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A, 2002, 950: 21-29 [32]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321-4325 [33]Shen Y J, Jiang H, Jin J P, Zhang Z B, Xi B, He Y Y, Wang G, Wang C, Qian L, Li X, Yu Q B, Liu H J, Chen D H, Gao J H, Huang H, Shi T L, Yang Z N. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol, 2004, 135: 1198-1205 [34]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregation analysis: a rapid method to detect markers in specific genomic regions by using segregation population. Proc Natl Acad Sci USA, 1991, 88: 9828-9832 [35]Takeda K. Internode elongation and dwarfism in some gramineous plants. Gamma Field Sym, 1977, 17: 1-18 [36]Wang G, Römheld V, Li C, Bangerth F. Involvement of auxin and CKs in boron deficiency induced changes in apicak dominance of pea plants. J Plant Physiol, 2006, 163: 591-600 [37]Ekamber K P, Kumar M. Hormonal regulation of tiller dynamics in differentially-tillering rice cultivars. Plant Growth Regul, 2007, 53: 215-223 [38]Wilhelm R. Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 501-531 [39]Fujioka S, Yokota T. Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol, 2003, 54: 137-164 [40]Mitsunaga S, Tashiro T, Yamaguchi J. Identification and characterization of gibberellins-insensitive mutants selected from among dwarf mutants of rice. Theor Appl Genet, 1994, 87: 705-712 [41]Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M. Defect in non-yellow coloring 3, an alpha/beta hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J, 2009, 59: 940-52 [42]Meskauskiene R, Nater M, Goslings D, Kessler F, Camp R, Klaus K. FLU: A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 2001, 98: 12826-12831 [43]Jeon J S, Lee S, Jung K H, Jun S H, Jeong D H, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han M J, Sung R J, Choi H S, Yu J H, Choi J H, Cho S Y, Cha S S, Kim S I, An G. T-DNA insertional mutagenesis for functional genomics in rice. Plant J, 2000, 22: 561-570 [44]Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell, 2003, 15: 1771-80 [45]Monde R A, Zito F, Olive J, Wollman F A, Stern D B. Post-transcriptional defects in tobacco chloroplast mutants lacking the cytochrome b6/f complex. Plant J, 2000, 21(1):61-72 [46]Kumar A M, Soll D. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol, 2000, 122: 49-55 [47]Xu Y Y, Jia J F, Wang B, Niu B T. Changes in isoenzymes and amino acids in forage and germination of the first post-flight generation of seeds of three legume species after space-flight. Grass Forage Sci, 1999, 54: 371-375 [48]Gomez-Roldan V, Fermas S, Brewer P B, Puech-Pagès V, Dun E A, Pillot J P, Letisse F, Matusova R, Danoun S, Portais J C, Bouwmeester H, Bécard G, Beveridge C A, Rameau C, Rochange S F. Strigolactone inhibition of shoot branching. Nature, 2008, 455: 189-194 [49]Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455: 195-200 [50]Xie X, Yoneyama K, Yoneyama K. The strigolactone story. Annu Rev Phytopathol. 2010, 48: 93-117 [51]Beveridge C A, Kyozuka J. New genes in the strigolactone-related shoot branching pathway. Curr Opin Plant Biol, 2010, 13: 34-39 [52]Bartley G E, Scolnik P A. Plant carotenoids: pigments for photoprotection, visual attraction, and human health. Plant Cell, 1995, 7: 1027-1038 [53]Tracewell C A, Vrettos J S, Bautista J A, Frank H A, Brudvig G W. Carotenoid photooxidation in photosystem II. Arch Biochem Biophys, 2001, 385: 61-69 [54]Wu D, Wright DA, Wetzel C, Voytas DF, Rodermel S. The IMMUTANS variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell, 1999, 11: 43-55 [55]Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M. Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell, 1999, 11: 57-68 [56]Aluru M, Yu F, Fu A, Rodermel S. Arabidopsis variegation mutants: new insights into chloroplast biogenesis. J Exp Bot, 2006, 57: 1871-1881 [57]Aluru M R, Rodermel S R. Control of chloroplast redox by the IMMUTANS terminal oxidase. Physiol Plant, 2004, 120: 4-11 [58]Josse E, Simkin A J, Gaffe J, Labourne A, Kuntz M, Carol P. A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol, 2000, 123: 1427-1436 [59]Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 2005, 435: 824-827 [60]Domagalska M A, Leyser O. Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol, 2011, 12: 211-221 [61]Arnon D I, Allen M B, Whatley F R. Photosynthesis by Isolated Chloroplasts. Nature, 1954, 174: 394-396 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[13] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[14] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[15] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
|