欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (03): 514-521.doi: 10.3724/SP.J.1006.2012.00514

• 耕作栽培·生理生化 • 上一篇    下一篇

用激光剥蚀电感耦合等离子体质谱研究小麦籽粒元素的共分布

王云霞1,2,杨连新1,*,Walter J. Horst2   

  1. 1 扬州大学江苏省作物遗传生理重点实验室, 江苏扬州225009; 2 Institute of Plant Nutrition, Leibniz University of Hannover, 30419 Hannover, Germany
  • 收稿日期:2011-07-07 修回日期:2011-10-12 出版日期:2012-03-12 网络出版日期:2012-01-04
  • 通讯作者: 杨连新, E-mail: lxyang@yzu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31101101, 31171460), 德国研究基金(DFG, HO931/23-1), 江苏高校优势学科建设工程资助项目以及江苏省高校自然科学重大基础研究项目(08KJA210003)资助。

Element Colocalization in Wheat Seed Revealed by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)

WANG Yun-Xia1,2,YANG Lian-Xin1,*,Walter J. Horst2   

  1. 1 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; 2 Institute of Plant Nutrition, Leibniz University of Hannover, 30419 Hannover, Germany
  • Received:2011-07-07 Revised:2011-10-12 Published:2012-03-12 Published online:2012-01-04
  • Contact: 杨连新, E-mail: lxyang@yzu.edu.cn

摘要: 增加粮食可食用部分微量营养元素的浓度, 需要更好地了解其在植株, 特别是籽粒内的运输和分布规律。激光剥蚀电感耦合等离子体质谱(laser ablation inductively coupled plasma mass spectrometry, LA-ICP-MS)是一种测定植物组织中元素空间分布的新技术。采用该技术对成熟小麦籽粒中锰(Mn)、铜(Cu)、锌(Zn)和磷(P)的空间分布及其关联程度定量研究。结果表明, 所测元素在籽粒不同部位的浓度分布差异很大。Cu、Zn和P浓度均以糊粉层最高, 胚乳最低, 胚居中, 浓度最大差异分别达15、42和33倍; Mn浓度则以胚最高, 胚乳最低, 糊粉层居中, 浓度最大差异达9倍。籽粒同一部位不同位置的元素浓度亦不相同, 外周胚乳(靠近糊粉层)的元素浓度大于内侧胚乳部位对应元素的浓度, 胚最外侧盾片部位的元素浓度大于胚中间位置的元素浓度, 且各元素趋势一致。比较分析发现, 麦粒不同部位元素的浓度变化存在明显的同步性, 籽粒中P浓度高的部位金属元素(Mn、Cu和Zn)浓度也高。这说明不同元素在向籽粒不同部位运输和积累过程中可能存在密切关联性。

关键词: 激光剥蚀电感耦合等离子体质谱(LA-ICP-MS), 小麦, 籽粒, 元素, 共分布

Abstract: For enhancement of micronutrient concentrations in edible parts of food crops, element uptake and partition in plants, especially in seeds, should be better understanded. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a recently developed technology for examining mineral elements distribution in plant tissues. By using this technique, we quantitatively measured distributions of manganese (Mn), copper (Cu), zinc (Zn), and phosphorus (P) in different parts of wheat seeds. The concentrations of Cu, Zn, and P were the highest in aleurone layer and the lowest in endosperm with the difference of 15, 42, and 33 folds, respectively. The Mn concentration was the highest in embryo, which was 9-fold higher than the lowest concentration in endosperm. The concentration gradients of measured elements were also found in same parts of wheat grain. The concentrations of P, Mn, Cu, and Zn in endosperm close to aleurone layer were higher than those in the middle of wheat seed. Similarly, the element concentrations in scutellum were higher than those in embryo axis. The four elements had similar distribution pattern in wheat seed with a clear synchronization. This phenomenon suggested the colocalization of these elements in wheat seeds. Therefore, the translocations and accumulations of P, Mn, Cu, and Zn in wheat seeds might be closely related to each other, and the finding is useful for wheat biofortification programs in the future.

Key words: Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Wheat, Seed, Elements, Colocalization

[1]Cakmak I. Enrichment of fertilizers with zinc: An excellent investment for humanity and crop production in India. J Trace Elem Med Biol, 2009, 23: 281–289

[2]Cakmak I, Pfeiffer W H, McClafferty B. Biofortification of durum wheat with zinc and iron. Cereal Chem, 2010, 87: 10–20

[3]Cakmak I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil, 2008, 302: 1–17

[4]Waters B M, Sankaran R P. Moving micronutrients from the soil to the seeds: Genes and physiological processes from a biofortification perspective. Plant Sci, 2011, 180: 562–574

[5]Ghandilyan A, Vreugdenhil D, Aarts M G M. Progress in the genetic understanding of plant iron and zinc nutrition. Physiol Plant, 2006, 126: 407–417

[6]Bityutskii N P, Magnitskiy S V, Korobeynikova L P, Lukina E I, Soloviova A N, Patsevitch V G, Lapshina I N, Matveeva G V. Distribution of iron, manganese, and zinc in mature grain and their mobilization during germination and early seedling development in maize. J Plant Nutr, 2002, 25: 635–653

[7]Choi E Y, Graham R, Stangoulis J. Semi-quantitative analysis for selecting Fe- and Zn-dense genotypes of staple food crops. J Food Compos Anal, 2007, 20: 496–505

[8]Otegui M S, Capp R, Staehelin L A. Developing seeds of Arabidopsis store different minerals in two types of vacuoles and in the endoplasmic reticulum. Plant Cell, 2002, 14: 1311–1327

[9]Vogel-Mikuš K, Pongrac P, Kump P, Ne?emer M, Sim?i? J, Pelicon P, Budnar M, Povh B, Regvar M. Localisation and quantification of elements within seeds of Cd/Zn hyperaccumulator Thlaspi praecox by micro-PIXE. Environ Pollut, 2007, 147: 50–59

[10]Lombi E, Scheckel K G, Pallon J, Carey A M, Zhu Y G, Meharg A A. Speciation and distribution of arsenic and localization of nutrients in rice grains. New Phytol, 2009, 184: 193–201

[11]Moore K L, Schröoder M, Lombi E, Zhao F J, McGrath S P, Hawkesford M J, Shewry P R, Grovenor C R M. NanoSIMS analysis of arsenic and selenium in cereal grain. New Phytol, 2010, 185: 434–445

[12]Wang Y X, Specht A, Horst W J. Stable isotope labelling and zinc distribution in grains studied by laser ablation ICP-MS in an ear culture system reveals zinc transport barriers during grain filling in wheat. New Phytol, 2011, 189: 428–437

[13]Becker J S, Dietrich R C, Matusch A, Pozebon D, Dressier V L. Quantitative images of metals in plant tissues measured by laser ablation inductively coupled plasma mass spectrometry. Spectrochim Acta B, 2008, 63: 1248–1252

[14]Wu B, Zoriy M, Chen Y X, Becker J S. Imaging of nutrient elements in the leaves of Elsholtzia splendens by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Talanta, 2009, 78: 132–137

[15]Shi J, Gras M A, Silk W K. Laser ablation ICP-MS reveals patterns of copper differing from zinc in growth zones of cucumber roots. Planta, 2009, 229: 945–954

[16]Wirth J, Poletti S, Aeschlimann B, Yakandawala N, Drosse B, Osorio S, Tohge T, Fernie A R, Günther D, Gruissem W, Sautter C. Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J, 2009, 7: 631–644

[17]Wang Y-X(王云霞), Yang L-X (杨连新), Horst W J. Quantification and spatial distribution of zinc in wheat grains by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J Nanjing Agric Univ (南京农业大学学报), 2011, 34(2): 18–22 (in Chinese with English abstract)

[18]Meharg A, Lombi E, Williams P, Scheckel K, Feldmann J, Raab A, Zhu Y, Islam R. Speciation and localization of arsenic in white and brown rice grains. Environ Sci Technol, 2008, 42: 1051–1057

[19]Xu S-X(徐是雄), Chen Q-R(陈庆让), Ma Z-Y(马正勇). Histochemical studies of scutellum during germination of oat seed by light microscopy and immunofluorescent localization of oat globulin. Acta Bot Sin (植物学报), 1983, 25(6): 505–511 (in Chinese with English abstract)

[20]Mazzolini A P, Pallaghy C K, Legge G J F. Quantitative microanalysis of Mn, Zn, and other elements in mature wheat seed. New Phytol, 1985, 100: 483–509

[21]Liu J C, Ockenden I, Truax M, Lott J N A. Phytic acid-phosphorus and other nutritionally important mineral nutrient elements in grains of wild-type and low phytic acid (lpa1-1) rice. Seed Sci Res, 2004, 14: 109–116

[22]Ren X L, Liu Q L, Fu H W, Wu D X, Shu Q Y. Density alteration of nutrient elements in rice grains of a low phytate mutant. Food Chem, 2007, 102: 1400–1406

[23]Kutman U B, Yildiz B, Ozturk L, Cakmak I. Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chem, 2010, 87: 1–9

[24]Erenoglu E B, Kutman U B, Ceylan Y, Yildiz B, Cakmak I. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytol, 2011, 189: 438–448

[25]Shi R L, Zhang Y Q, Chen X P, Sun Q P, Zhang F S, Römheld V, Zou C Q. Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). J Cereal Sci, 2010, 51: 165–170

[26]Wang Z(王忠), Gu Y-J(顾蕴洁), Li W-F(李卫芳), Chen G(陈刚), Shi H-Y(石火英), Chen X-H(陈秀花). Development of wheat endosperm and pathway of nutrient entering the endosperm. Acta Agro Sin (作物学报), 1998, 24(5): 536–543 (in Chinese with English abstract)

[27]Tauris B, Borg S, Gregersen P L, Holm P B. A roadmap for zinc trafficking in the developing barley grain based on laser capture microdissection and gene expression profiling. J Exp Bot, 2009, 60: 1333–1347
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[3] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[4] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[5] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[6] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[7] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[8] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[9] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[10] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[11] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[12] 杨谨, 白爱宁, 白雪, 陈娟, 郭林, 刘春明. 水稻胚胎和胚乳双缺陷突变体eed1的表型与遗传分析[J]. 作物学报, 2022, 48(2): 292-303.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 闫岩, 张钰石, 刘础荣, 任丹阳, 刘洪润, 刘雪晴, 张明才, 李召虎. 冬小麦-夏玉米轮作“双晚”种植模式下的品种匹配与资源效率[J]. 作物学报, 2022, 48(2): 423-436.
[15] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!