欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (08): 1435-1442.doi: 10.3724/SP.J.1006.2012.01435

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于多个相关群体的玉米雄穗相关性状QTL分析

杨钊钊1,李永祥1,刘成2,刘志斋1,李春辉1,李清超1,彭勃1,张岩1,王迪1,谭巍巍1,孙宝成2,石云素1,*,宋燕春1,王天宇1,黎  裕1   

  1. 1 中国农业科学院作物科学研究所,北京100081;2 新疆农业科学院粮食作物研究所,新疆乌鲁木齐830000
  • 收稿日期:2012-01-13 修回日期:2012-04-20 出版日期:2012-08-12 网络出版日期:2012-06-04
  • 通讯作者: 石云素, E-mail: shiyunsu@mail.caas.net.cn?
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB100100,2009CB118401)和国家自然科学基金项目(U1138304)资助。

QTL Analysis of Tassel-Related Traits in Maize (Zea mays L.) Using Multiple Connected Populations

YANG Zhao-Zhao1,LI Yong-Xiang1,LIU Cheng2,LIU Zhi-Zhai1,LI Chun-Hui1,LI Qing-Chao1,PENG Bo1,ZHANG Yan1,WANG Di1,TAN Wei-Wei1,SUN Bao-Cheng2,SHI Yun-Su1,*,SONG Yan-Chun1,WANG Tian-Yu1,LI Yu1   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Institute of Food Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
  • Received:2012-01-13 Revised:2012-04-20 Published:2012-08-12 Published online:2012-06-04
  • Contact: 石云素, E-mail: shiyunsu@mail.caas.net.cn?

摘要: 雄穗相关性状对玉米生产至关重要。为了解析玉米雄穗相关性状的遗传机制,利用以黄早四为共同亲本组配的11个重组自交系群体,对玉米雄穗一级分枝数、雄穗主轴长和雄穗干重3个性状进行QTL分析。经过对11个群体及亲本两年三点的田间鉴定,单环境和联合环境下的玉米雄穗相关性状QTL定位,及基因型与环境互作和上位性互作分析,检测到15个在多环境下稳定表达(5个环境以上)的“环境钝感”主效QTL,其中,在染色体bin3.04区域,齐319群体和旅28群体中都定位到1个主效雄穗一级分枝数相关QTL,其平均贡献率分别为17.4%和14.4%,并且2个群体的QTL标记区间高度重叠,在IBM2008 Neighbors图谱上的重叠区间为226.0~230.1。对比不同群体结果发现,在2个群体以上都能检测到的一致性区间21个,其中在第2、第3、第6、第8染色体上的5个一致性区间在3个群体中可稳定表达。这些多环境和多个遗传背景下稳定表达的位点可作为玉米雄穗性状分子标记辅助选择、精细定位及基因克隆的候选位点。

关键词: 玉米, 雄穗相关性状, QTL

Abstract: Maize tassel-related traits are of importance to maize production. QTLs for three tassel-related traits were mapped in 11 RIL populations with the common parent “Huangzaosi” under a single environment and across environments to understand genetic basis of maize tassels. Meanwhile, epistasis among QTLs and QTL by environment interactions (QEI) was analyzed. Totally 15 major constitutive QTLs were detected in at least five environments. Particularly, two constitutive QTLs were detected in bin 3.04 in the Qi 319 and Lü 28 populations, which had an overlapping interval of 226.0–230.1 on the IBM 2008 Neighbors map, with a quite high phenotypic variance explained, and the mean R2 of 17.4% and 14.4%, respectively. A total of 21 common QTLs were detected in more than two populations, of which five on chromosome 2, 3, 6 and 8 were found in three populations. The QTLs stably expressed under different environments or genetic backgrounds may play an important role in controlling maize tassel-related traits, and be used at the candidates for fine mapping and positional cloning.

Key words: Maize, Tassel-related traits, QTL

[1]Lambert R J, Johnson R R. Leaf angle, tassel morphology, and the performance of maize hybrids. Crop Sci, 1978, 18: 499–502

[2]Geraldi K S, Miranda Filho J B, Vencovsky R. Estimates of genetic parameters of tassel characters in maize (Zea mays L.) and breeding perspectives. Maydica, 1985, 30: 1–14

[3]Monneveux P, Sanchez C, Tiessen A. Future progress in drought tolerance in maize needs new secondary traits and cross combinations. J Agric Sci, 2008, 146: 287–300

[4]Li Y, Ma X, Wang T, Li Y, Liu C, Liu Z, Sun B, Shi Y, Song Y, Carlone M, Bubeck D, Bhardwaj H, Whitaker D, Wilson W, Jones E, Wright K, Sun S, Niebur W, Smith S. Increasing maize productivity in China by planting hybrids with germplasm that responds favorably to higher planting densities. Crop Sci, 2011, 51: 2391–2400

[5]Brown P J, Upadyayula N, Mahone G S, Tian F, Bradbury P J, Myles S, Holland J B, Flint-Garcia S, McMullen M D, Buckler E S, Rocheford T R. Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet, 2011, 7: 1–14

[6]Mickelson S M, Stuber C S, Senior L, Kaeppler S M. Quantitative trait loci controlling leaf and tassel traits in a B73 × Mo17 population of maize. Crop Sci, 2002, 42: 1902–1909

[7]Upadyayula N, Silva H S, Bohn M O, Rocheford T R. Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theor Appl Genet, 2006, 112: 592–606

[8]Tang H(汤华), Yan J-B(严建兵), Huang Y-Q(黄益勤), Zheng Y-L(郑用琏), Li J-S(李建生). QTL mapping of five agronomic traits in maize. Acta Genet Sin (遗传学报), 2005, 32(2): 203–209 (in Chinese with English abstract)

[9]Wang D(王迪), Li Y-X(李永祥), Wang Y(王阳), Liu C(刘成), Liu Z-Z(刘志斋), Peng B(彭勃), Tan W-W(谭巍巍), Zhang Y(张岩), Sun B-C(孙宝成), Shi Y-S(石云素), Song Y-C(宋燕春), Wang T-Y(王天宇), Li Y(黎裕). Major quantitative trait loci analysis of tassel primary branch number and tassel weight in maize (Zea mays). Chin Bull Bot (植物学报), 2011, 46(1): 11–20 (in Chinese with English abstract)

[10]Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L. Connected populations for testing for epistasis: an application in maize. Theor Appl Genet, 2006, 113: 206–224

[11]Peng B, Li Y, Wang Y, Liu C, Liu Z, Tan W, Zhang Y, Wang D, Shi Y, Sun B, Song Y, Wang T, Li Y. QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor Appl Genet, 2011, 122: 1305–1320

[12]Maroof M, Biyashev R M, Yang G P, Zhang Q, Allard R W. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal location and population dynamics. Proc Natl Acad Sci USA, 1994, 91: 5466–5470

[13]Lander E S, Green P, Abranhanson J, Barlow A, Daley M, Lincoln S, Newburg L. MAPMAKER: an interactive computer package for cinstructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181

[14]Haldane J B S. The combination of linkage values and the calculation of distance between the loci of linked factor. Genetics, 1919, 8: 299–309

[15]Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 161–174

[16]Wang J-K(王建康). Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin (作物学报), 2009, 35(2): 1–7 (in Chinese with English abstract)

[17]Liao Y-X(廖永祥), Wang J(王瑾), Zhou R-H(周荣华), Ren Z-L(任正隆), Jia J-Z(贾继增). Mining favorable alleles of QTLs conferring 1000-grain weight from synthetic wheat. Acta Agron Sin (作物学报), 2008, 34(11): 1877–1884 (in Chinese with English abstract)

[18]Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects. Theor Appl Genet, 2005, 100: 1268–1274

[19]Lu M(路明), Zhou F(周芳), Xie C-X(谢传晓), Li M-S(李明顺), Xu Y-B(徐云碧), Warburton M, Zhang S-H(张世煌). Construction of a SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid. Hereditas (遗传), 2007, 29(9): 1131–1138 (in Chinese with English abstract)

[20]Berke T G, Rocheford T R. Quantitative trait loci for tassel traits in maize. Crop Sci, 1999, 39: 1439–1443

[21]Upadyayula N, Wassom J, Bohn M O, Rocheford T. Quantitative trait loci analysis of phenotypic traits and principal components of maize tassel inflorescence architecture. Theor Appl Genet, 2006, 113: 1395–1407

[22]Pressoir G, Brown P J, Zhu W, Upadyayula N, Rocheford T, Buckler E S, Kresovich S. Natural variation in maize architecture is mediated by allelic differences at the PINOID co-ortholog barren inflorescence2. Plant J, 2009, 58: 818–828

[23]Vollbrecht E, Springer S P, Goh L, Buckler E S, Martienssen R. Architecture of floral branch systems in maize and related grasses. Nature, 2005, 436: 1119–1126

[24]Bortiri E, Hake S. Flowering and determinacy in maize. J Exp Bot, 2007, 58: 909–916

[25]Buckler E S, Holland J B, Bradbury P J, Acharya C B, Brown P J, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz J C, Goodman M M, Harjes C, Guill K, Kroon D E, Larsson S, Lepak N K, Li H, Mitchell S E, Pressoir G, Peiffer J A, Rosas M O, Rocheford T R, Romay M C, Romero S, Saivo S, Villeda H S, Silva H S, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen M D. The genetic architecture of maize flowering time. Science, 2009, 325: 714–718

[26]Chardon F, Virion B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics, 2004, 168: 2169–2185
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[15] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!