欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1782-1790.doi: 10.3724/SP.J.1006.2012.01782

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

全生育期耐盐恢复系在正常灌溉条件下性状表现及耐盐杂交稻的选育

章禄标1,2,潘晓飚3,张建2,陈凯2,张强2,徐建龙2,*,潘学彪1,黎志康2   

  1. 1 扬州大学 / 江苏省作物遗传生理重点实验室 / 植物功能基因组学教育部重点实验室,江苏扬州 225009;2 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程,北京 100081;3 浙江省台州市农业科学研究院作物研究所,浙江临海 317000
  • 收稿日期:2012-03-21 修回日期:2012-06-10 出版日期:2012-10-12 网络出版日期:2012-07-27
  • 通讯作者: 徐建龙, E-mail: xujlcaas@yahoo.com.cn, Tel: 010-82105854?
  • 基金资助:

    本研究由引进国际先进农业科学技术计划(948计划)项目[2011-G2B(2)]和国家高技术研究发展计划(863计划)项目(2012AA101101)资助。

Performance of Restorer Lines with Salt Tolerance in Whole Growth Period under Normal Irrigated Condition and Development of Hybrid Rice with Salt Tolerance

ZHANG Lu-Biao1,2,PAN Xiao-Biao3,ZHANG Jian2,CHEN Kai2,ZHANG Qiang2,XU Jian-Long2,*,PAN Xue-Biao1,LI Zhi-Kang2   

  1. 1Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of Education Ministry, Yangzhou University, Yangzhou 225009, China; 2 Institute of Crop Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Crop Institute of Taizhou Academy of Agricultural Sciences of Zhejiang Province, Linhai 317000, China
  • Received:2012-03-21 Revised:2012-06-10 Published:2012-10-12 Published online:2012-07-27
  • Contact: 徐建龙, E-mail: xujlcaas@yahoo.com.cn, Tel: 010-82105854

摘要:

利用前期以明恢86为轮回亲本与全球水稻分子育种计划的4个供体亲本(Gayabyeo、沈农265、早籼14和Y134)杂交构建的高代回交导入群体,在浙江省三门县沿海滩涂采用0.5%盐浓度的海水全生育期灌溉,筛选出150个耐盐恢复系群体,考察了耐盐恢复系在正常灌溉条件下的性状分离及与两个三系不育系测交种的优势表现。结果表明,耐盐恢复系在正常灌溉条件下的产量及其相关性状出现明显的分离,性状分离的类型及特点因选择群体和性状本身不同而异,从中选育出30个单株产量和耐盐性显著好于轮回亲本明恢86的株系,这些株系大多表现穗长缩短,株高和千粒重下降,但单株有效穗和结实率显著增加,导致产量的显著提高。4个组合的耐盐恢复系群体与两个三系不育系(II-32A和川345A)测交种的性状分离明显,与明恢86和两个三系不育系的测交种相比,多数测交种表现穗长缩短,株高降低,单株有效穗数相仿,但与II-32A测交的杂种千粒重显著增加,杂种表现趋势与耐盐恢复系本身不完全相同。分别鉴定出22个和23个耐盐恢复系,其与两个不育系测交的杂种产量显著高于明恢86与相应不育系的测交种,表现出较强的杂种优势,其中比生产对照种汕优10号显著或极显著增产的测交组合分别有7个(II-32A为母本)和4个(川345A为母本)。研究表明,利用优良恢复系的回交导入后代在大田盐胁迫条件下筛选耐盐单株,结合耐盐后代在正常灌溉条件下产量及相关性状的鉴定筛选,可以有效地改良恢复系的耐盐性,并选育出耐盐性提高的强优势组合。

关键词: 水稻, 耐盐性, 测交种, 恢复系, 杂种优势

Abstract:

Four introgression line populations derived from the recurrent parent Minghui 86 and four donor parents (Gayabyeo, Shennong 265, Zaoxian 14, and Y134) were screened and evaluated for salt tolerance (ST) under the stress of 0.5% salt concentration over the whole growth stages in Sanmen county of Zhejiang province, so that a total of 150 restorer lines with ST were selected. In this study, the 150 restorer lines with ST and their test-crossing hybrids with cytoplastic male sterile lines II-32A and Chuan 345A were investigated for grain yield and its related agronomic traits under normal irrigated condition. Segregations presented in yield and its related traits among those lines, showing various types with different populations and traits. Thirty promising restorer lines with significantly higher yield and ST were selected. Most of them showed a decrease in panicle length (PL), plant height (PH), and thousand grain weight (TGW), but significantly increased panicle number per plant (PNP) and seed setting rate (SSR), thus resulting in significantly higher yield. As compared with hybrids crossed between Minghui 86 and the two sterile lines, test-crossing populations derived from the crosses between the restorer lines with ST and the two sterile lines showed shorten PL and PH, similar PNP, but significantly increased TGW when tested with II-32A, indicating there were partial differences in trait performance between salt-tolerant restorer lines and their hybrids. Twenty-two and 23 hybrid combinations showed stronger heterosis as compared with the hybrids derived from Minghui 86 and the two corresponding sterile lines. Among them, seven (from II-32A) and four (from Chuan 345A) hybrids significantly surpassed the commercial check combination Shanyou 10 in yield. It was indicated that ST screening in the field under salt stress combined with selections of yield and its related traits in normal irrigated condition for introgression line populations with an elite restorer background will efficiently improve the ST of restorer lines and possibly facilitate to develop the ST-improved hybrid rice.

Key words: Rice, Salt tolerance, Test cross, Restorer line, Heterosis

[1]Martinez-Beltran J, Manzur C L. Overview of salinity problems in the world and FAO strategies to address the problem. In: Proceedings of International Salinity Forum Managing Saline Soils and Water: Science, Technology and Social Issues. Riverside Convention Center, Riverside, California, USA. 25–28 April, 2005. pp 311–314



[2]Hu S-K(胡时开), Tao J-H(陶红剑), Qian Q(钱前), Guo L-B(郭龙彪). Progresses on genetics and molecular breeding for salt-tolerance in rice. Mol Plant Breed (分子植物育种), 2010, 8(4): 629–640 (in Chinese with English abstract)



[3]Johnson D W, Smith S E, Dobrenz A K. Genetic and phenotypic relationships in response to NaCl at different developmental stages in alfalfa. Theor Appl Genet, 1992, 83: 833–838



[4]Zang J-P(藏金萍), Sun Y(孙勇), Wang Y(王韵), Yang J(杨静), Li F(李芳), Zhou Y-L(周永力), Zhu L-H(朱苓华), Reys J, Fotokian M, Xu J-L(徐建龙), Li Z-K(黎志康). Dissection of genetic overlap of salt tolerance qtls at the seedling and tillering stages using backcross introgression lines in rice. Sci China, Ser C (中国科学C辑: 生命科学), 2008, 51(11): 583–591 (in Chinese)



[5]Foolad M R, Chen F Q. RFLP mapping of QTLs conferring salt tolerance during the vegetative stage in tomato. Theor Appl Genet, 1999, 99: 235–243



[6]Zaidem M L, Mendoza R D, Tumimbang E B. Genetic variability of salinity tolerance at different growth stages of rice. In: International Rice Research Institute. PBGB 2003 Annual Report. Las Banos, Philippines: IRRI, 2004. pp 19–20



[7]Li Z K, Xu J L. Breeding for drought and salt tolerant rice (Oryza sativa L.): progress and perspectives. In: Jenks M A, Hasegawa P M, Jain S M, eds. Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Netherlands: Springer, 2007. pp 531–564



[8]Pan X-B(潘晓飚), Huang S-J(黄善军), Chen K(陈凯), Meng L-J(孟丽君), Xu J-L(徐建龙). Selection of rice restorer lines with salinity tolerance through salt solution irrigation over whole growth stage under field conditions. Chin J Rice Sci (中国水稻科学), 2012, 26(1): 49–54 (in Chinese with English abstract)



[9]SAS Institute. SAS/STAT User’s Guide. Cary NC, USA: SAS Institute, 1996. pp 25–36



[10]Yeo A R. Physiological criteria in screening and breeding. In: Yeo A R, Flowers T J, eds. Soil Mineral Stresses: Approaches to Crop Improvement. Berlin: Springer-Verlag, 1994. pp 37–57



[11]Meng L-J(孟丽君), Lin X-Y(林秀云), Cui Y-R(崔彦茹), Chen K(陈凯), Sun Y(孙勇), Zhu L-H(朱苓华), Xu J-L(徐建龙), Li Z-K(黎志康). Identification and screening of salt and alkaline tolerance in rice using advanced backcross introgression populations. Mol Plant Breed (分子植物育种), 2010, 8(6): 1142–1150 (in Chinese with English abstract)



[12]Sun Y(孙勇), Zang J-P(藏金萍), Wang Y(王韵), Zhu L-H(朱苓华), Mohammadhosein F, Xu J-L(徐建龙), Li Z-K(黎志康). Mining favorable salt-tolerance QTL from rice germplasm using a backcrossing introgression line population. Acta Agron Sin (作物学报), 2007, 33(10): 1611−1617 (in Chinese with English abstract)



[13]Tal M. Genetics of salt tolerance in higher plants: theoretical and applied considerations. Plant Soil, 1985, 89: 199–226



[14]Rajanaidu N, Zakri A H. Breeding for morpho-physiological traits in crop plants. In: Zakri A H, ed. Plant Breeding and Genetic Engineering. Bangkok: SABRAO publishers, 1988. pp 116–139



[15]Akbar M. Breeding saline-resistant varieties of rice. Jpn J Breed, 1973, 22: 277–284



[16]Yang J(杨静), Sun Y(孙勇), Cheng L-R(程立锐), Zhou Z(周政), Wang Y(王韵), Zhu L-H(朱苓华), Cang J(苍晶), Xu J-L(徐建龙), Li Z-K(黎志康). Genetic background effect on QTL mapping for salt tolerance revealed by a set of reciprocal introgression line populations in rice. Acta Agron Sin (作物学报), 2009, 35(6): 974–982 (in Chinese with English abstract)



[17]Andaya V C, Tai T H. Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. Theor Appl Genet, 2006, 113: 467–475



[18]Jiang L, Xun M M, Wang H K, Wan H M. QTL analysis of cold tolerance at seedling stage in rice (Oryza sativa L.) using recombination inbred lines. J Cereal Sci, 2008, 48: 173–179



[19]Xu J L, Lafitte H R, Gao Y M, Fu B Y, Torres R, Li Z K. QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theor Appl Genet, 2005, 111: 1642–1650



[20]He Y X, Zheng T Q, Hao X B, Wang L F, Gao Y M, Hua Z T, Zhai H Q, Xu J L, Xu Z J , Zhu L H, Li Z K. Yield performances of japonica introgression lines selected for drought tolerance in a BC breeding programme. Plant Breed, 2010, 129: 167–175



[21]Zhou Z(周政), Li H(李宏), Sun Y(孙勇), Huang D-Q(黄道强), Zhu L-H(朱苓华), Lu D-C(卢德城), Li K-H(李康活), Xu J-L(徐建龙), Zhou S-C(周少川), Li Z-K(黎志康). Effect of selection for high yield, drought and salinity tolerances on yield-related traits in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2010, 36(10): 1725–1735 (in Chinese with English abstract)



[22]Xu J-L(徐建龙), Gao Y-M(高用明), Fu B-Y(傅彬英), Li Z-K(黎志康). Identification and screening of favorable genes from rice germplasm in backcross introgression populations. Mol Plant Breed (分子植物育种), 2005, 3(5): 619–628 (in Chinese with English abstract)



[23]Ali A J, Xu J L, Ismail A M. Hidden diversity for abiotic and biotic stress tolerances in the primary gene pool of rice revealed by a large backcross breeding program. Field Crops Res, 2006, 97: 66–76



[24]Adorada D L, Mendoza R D, Gregorio G B. Agronomic characterization of saline-tolerant elite breeding lines with multiple tolerance for abiotic stresses. In: International Rice Research Institute. PBGB 2003 Annual Report. Los Banos, the Philippines: IRRI, 2004. p 29

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!