作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1864-1874.doi: 10.3724/SP.J.1006.2012.01864
钱春荣1,3,于洋3,宫秀杰3,姜宇博3,赵杨3,王俊河3,杨忠良4,张卫建1,2,*
QIAN Chun-Rong1,3,YU Yang3,GONG Xiu-Jie3,JIANG Yu-Bo3,ZHAO Yang3,WANG Jun-He3,YANG Zhong-Liang4,ZHANG Wei-Jian1,2,*
摘要:
明确不同年代春玉米生产力对种植密度和氮肥水平的响应特征及其趋势,对高产高效的耐密品种选育和密植抗倒栽培具有重要的理论参考和技术指导意义。本文以黑龙江近50年来第一积温带大面积种植的8个典型春玉米品种为材料,于2009和2010年进行密度和施肥的田间试验,比较不同年代主栽品种生产力演变特征。结果显示,黑龙江省1970s—2000s玉米品种更替过程中,单株生产力与群体产量均明显提高,平均增幅分别为16.96 g 10年-1和790 kg hm-2 10年-1;植株空秆率和倒伏率显著下降,株高、穗位、单株叶面积、穗粒数、千粒重显著提高。随着密度的提高,各年代玉米的单株产量呈显著下降趋势,群体产量呈抛物线形上升,群体最高产量的理论密度增幅为3 507株 hm-2 10 年-1;空秆率显著提高,但倒伏率仅1970s和1980s的品种呈递增趋势;株高、单株叶面积、棒三叶面积、穗粒数与千粒重均呈现下降趋势,穗位随密度增加呈显著上升趋势。各年代品种株高、穗位、单株叶面积和千粒重随氮肥水平提高呈增加趋势。在150~450 kg hm-2的施氮水平范围,随着氮肥水平的提高,各年代品种增产效果不明显。各主要指标在年代、密度和氮肥水平之间存在显著的互作效应。对照东北玉米现有的品种特性、种植密度和施肥现状表明,选育耐密品种和实施密植抗倒栽培的增产潜力大,在现在的施肥水平上进一步提高种植密度是东北春玉米高产增效耕作栽培的技术创新方向。
[1]Wang C-T(王崇桃), Li S-K(李少昆), Han B-T(韩伯棠). Approaches to high-yielding and yield potential exploration in corn. Sci Technol Rev (科技导报), 2006, 24(4): 7–11 (in Chinese with English abstract) [2]Duvick D N. The contribution of breeding to yield advances in maize (Zea mays L.). In: Duvick D N, Sparks L. Advances in Agronomy. San Diego, CA: Academic Press, 2005. pp 83–145[3]Duvick D N. Genetic progress in yield of United States maize (Zea mays L.). Maydica, 2005, 50: 193–202[4]Duvick D N,Cassman K G. Post-green revolution trends in yield potential of temperate maize in the North-central United States. Crop Sci, 1999, 39: 1622–1630[5]Qiao C G, Wang Y J, Guo H A, Chen X J, Liu J Y, Li S Q. A review of advances in maize production in Jilin province during 1974–1993. Field Crops Res, 1996, 47: 65–75[6]Russell W A. Genetic improvement of maize yields. Adv Agron, 1991, 46: 245–298[7]Duvick D N. Genetic contributions to advances in yield of U.S. maize. Maydica, 1992, 37: 39–79[8]Duvick D N. Genteic rates of gain in hybrid maize yields during the past 40 years. Maydica, 1977, 22: 187–196[9]Luque S F, Cirilo A G, Otegui M E. Genetic gains in grain yield and related physiological attributes in Argentine maize hybrids. Field Crops Res, 2006, 95: 383–397[10]Eyherabide G H, Damilano A L, Colazo J C. Genetic gain for grain yield of maize in Argentina. Maydica, 1994, 39: 207–211[11]Cunha Fernandes J S, Franzon J F. Thirty years of genetic progress in maize (Zea mays L.) in a tropical environment. Maydica, 1997, 42: 21–27[12]Xie Z-J(谢振江), Li M-S(李明顺), Xu J-S(徐家舜), Zhang S-H(张世煌). Contributions of genetic improvement to yields of maize hybrids during different eras in North China. Sci Agric Sin (中国农业科学), 2009,42 (3): 781–789 (in chinese with English abstract) [13]Hu C-H(胡昌浩), Dong S-T(董树亭), Wang K-J(王空军), Sun Q-Q(孙庆泉). Studies on development law for main agronomice characters of maize hybrid in different eras. J Maize Sci (玉米科学), 1998,6 (3): 50–54 (in Chinese) [14]Sangoi L, Gracietti M A, Rampazzo C, Bianchetti P. Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crops Res, 2002, 79: 39–51[15]Tollenaar M, Wu J. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci, 1999, 39: 1597–1604[16]Echarte L, Luque S, Andrade F H, Sadras V O, Cirilo A, Otegui M E, Vega C R C. Response of maize kernel number to plant density in Argentinean hybrids released between 1965 and 1993. Field Crops Res, 2000, 68: 1–8[17]Maddonni G A, Otegui M E, Cirilo A G. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Res, 2001, 71: 183–193[18]Subedi K D, Ma B L, Smith D L. Response of a leafy and non-leafy maize hybrid to population densities and fertilizer nitrogen levels. Crop Sci, 2006, 46: 1860–1869[19]Carlone M R, Russell W A. Response to plant densities and nitrogen levels for four maize cultivars from different eras of breeding. Crop Sci, 1987, 27: 465–470[20]Tollenaar M, Lee E A. Yield potential, yield stability and stress tolerance in maize. Field Crops Res, 2002, 75: 161–169[21]Ci X K, Li M S, Xu J S, Lu Z Y, Bai P F, Ru G L, Liang X L, Zhang D G, Li X H, Bai L, Xie C X, Hao Z F, Zhang S H, Dong S T. Trends of grain yield and plant traits in Chinese maize cultivars from the 1950s to the 2000s. Euphytica, 2011, DOI: 10.1007/s10681-011-0560-5[22]Wang T Y, Ma X L, Yu L, Bai D P, Liu C, Liu Z Z, Tan X J, Shi Y S, Song Y C, Mario C, David B, Hans B, Elizabeth J, Kevin W, Stephen S. Changes in yield and yield components of single-cross maize hybrids released in China between 1964 and 2001. Crop Sci, 2011, 51: 512–525[23]Duvick D N. What is yield? In: Edmeades G O, Bänziger M, Mickelson H R, Peňa-Valdivia C B eds. Developing Drought and Low N-Tolerant Maize. Proceedings of a Symposium. El Batan, Mexico: CIMMYT, 1997. pp 332–335[24]Eyherabide G H, Damilano A L. Comparison of genetic gain for grain yield of maize between the 1980s and 1990s in Argentina. Maydica, 2001, 46: 277–281[25]Duvick D N, Smith J S C, Cooper M. Long-term selection in a commercial hybrid maize breeding program. In: Janick J. Plant Breeding Reviews. Wiley, New York. 2004, 24: 109–151[26]Cardwell V B. Fifty years of Minnesota corn production: Sources of yield increase. Agron J, 1982, 74: 984–990[27]Troyer A F. Breeding widely adapted, popular maize hybrids. Euphytica, 1996, 92: 163–174[28]Frei O M. Changes in yield physiology of corn as a result of breeding in northern Europe. Maydica, 2000, 45: 173–183[29]Traore S B, Carlson R E, Pilcher C D, Rice M E. Bt and non-Bt maize growth and development as affected by temperature and drought stress. Agron J, 2000, 92: 1027–1035[30]Tokatlidis I S, Koutroubas S D. A review of maize hybrids’ dependence on high plant populations and its implications for crop yield stability. Field Crops Res, 2004, 88: 103–114[31]Good A G, Shrawat A K, Muench D G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci, 2004, 9: 597–605[32]Ma B L, Dwyer L M, Gregorich E G. Soil nitrogen amendment effects on nitrogen uptake and grain yield of maize. Agron J, 1999, 91: 650–656[33]Zhang F-S(张福锁), Wang J-Q(王激清), Zhang W-F(张卫峰), Cui Z-L(崔振岭), Ma W-Q(马文奇), Chen X-P(陈新平), Jiang R-F(江荣风). Nutrient use efficiencies of major ceral crops in China and measures for improvement. Acta Pedol Sin (土壤学报), 2008, 45(5): 915–924 (in Chinese with English abstract) [34]Raun W R, Johnson G V. Improving nitrogen use efficiency for cereal production. Agron J, 1999, 9: 357–363 [35]Ma B L, Subedi K D, Liu A. Variations in grain nitrogen removal associated with management practices in maize production. Nutr Cycl Agroecosyst, 2006, 76: 67–80 |
[1] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[2] | 严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4): 930-941. |
[3] | 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192. |
[4] | 张兴华,高杰,杜伟莉,张仁和*,薛吉全. 干旱胁迫对玉米品种苗期叶片光合特性的影响[J]. 作物学报, 2015, 41(01): 154-159. |
[5] | 张仁和,杜伟莉,郭东伟,张爱瑛,胡富亮,李凤艳,薛吉全. 陕西省不同年代玉米品种产量和氮效率性状的变化[J]. 作物学报, 2014, 40(05): 915-923. |
[6] | 靳立斌,崔海岩,李波,杨今胜,董树亭,赵斌,刘鹏,张吉旺. 综合农艺管理对夏玉米氮效率和土壤硝态氮的影响[J]. 作物学报, 2013, 39(11): 2009-2015. |
[7] | 高虹,李飞飞,吕国依,夏英俊,王嘉宇,孙健,唐亮,徐正进. 籼粳稻杂交对中国东北粳稻品质的影响[J]. 作物学报, 2013, 39(10): 1806-1813. |
[8] | 李志杰,张振平,张艺,邓艾兴,宋振伟,郑成岩,张卫建. 辽宁不同年代水稻品种生产力和氮肥效率对施氮水平的响应差异[J]. 作物学报, 2013, 39(09): 1679-1686. |
[9] | 李敏,张洪程,杨雄,葛梦婕,马群,魏海燕,戴其根,霍中洋,许轲. 水稻高产氮高效型品种的物质积累与转运特性[J]. 作物学报, 2013, 39(01): 101-109. |
[10] | 钱春荣,于洋,宫秀杰,姜宇博,赵杨,郝玉波,李梁,张卫建. 黑龙江省不同年代玉米杂交种氮肥利用效率对种植密度和施氮水平的响应[J]. 作物学报, 2012, 38(11): 2069-2077. |
[11] | 李敏,张洪程,杨雄,葛梦婕,马群,魏海燕,戴其根,霍中洋,许轲. 不同氮利用效率基因型水稻茎秆特性比较[J]. 作物学报, 2012, 38(07): 1277-1285. |
[12] | 李敏,张洪程,杨雄,葛梦婕,马群,魏海燕,戴其根,霍中洋,许轲,曹利强,吴浩. 水稻高产氮高效型品种的根系形态生理特征[J]. 作物学报, 2012, 38(04): 648-656. |
[13] | 张洪程, 吴桂成, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 吕修涛, 万靓军, 黄银忠. 水稻氮肥精确后移及其机理[J]. 作物学报, 2011, 37(10): 1837-1851. |
[14] | 薛亚光,陈婷婷,杨成,王志琴,刘立军,杨建昌. 中粳稻不同栽培模式对产量及其生理特性的影响[J]. 作物学报, 2010, 36(3): 466-476. |
[15] | 张军;赵团结;盖钧镒. 中国东北大豆育成品种遗传多样性和群体遗传结构分析[J]. 作物学报, 2008, 34(09): 1529-1536. |
|