欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1891-1899.doi: 10.3724/SP.J.1006.2012.01891

• 耕作栽培·生理生化 • 上一篇    下一篇

水稻颖花自然开放过程中茉莉酸(JA)生物合成的变化

何永明1,林拥军2,曾晓春1,3,*   

  1. 1 江西农业大学作物生理生态与遗传育种教育部重点实验室 / 农业部双季稻生理生态与栽培重点开放实验室,江西南昌330045;2 华中农业大学作物遗传改良国家重点实验室 / 国家植物基因研究中心,湖北武汉430070;3 宜春学院生命科学与资源环境学院,江西宜春336000
  • 收稿日期:2012-03-01 修回日期:2012-06-25 出版日期:2012-10-12 网络出版日期:2012-07-27
  • 通讯作者: 曾晓春, E-mail: xchzeng2002@yahoo.com.cn, Tel: 0795-3200698

Dynamic Changes of Jasmonic Acid Biosynthesis in Rice Florets during Natural Anthesis

HE Yong-Ming1,LIN Yong-Jun2,ZENG Xiao-Chun1,3,*   

  1. 1 Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Key Laboratory of Physiology, Ecology, and Cultivation of Double Cropping Rice, Ministry of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China; 2 National Key Laboratory of Crop Genetic Improvement / National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China; 3 College of Life Science and Environmental Resources, Yichun University, Yichun 336000, China
  • Received:2012-03-01 Revised:2012-06-25 Published:2012-10-12 Published online:2012-07-27
  • Contact: 曾晓春, E-mail: xchzeng2002@yahoo.com.cn, Tel: 0795-3200698

摘要:

外源茉莉酸(JA)及其甲酯(MeJA)对水稻、小麦、黑麦和高粱等禾本科植物颖花开放具有强烈的诱导效应,然而内源JA是否参与颖花开放的调控目前还缺乏充分的证据。本研究应用高效液相色谱-串联质谱(HPLC-MS/MS)系统检测了粳稻武运粳7号和籼稻明恢63颖花自然开放过程中JA水平变化,并以实时定量反转录PCR (real-time RT-PCR)技术分析了武运粳7号颖花开放过程中JA生物合成途径关键基因表达变化。结果发现,水稻颖花JA水平的变化与开颖进程相一致。JA水平在上午颖花开颖前较平稳,开颖时急剧上升至峰值,闭颖后又下降。开颖时JA水平的峰值比开颖前1 h提高4~5倍。与JA水平变化相对应,催化JA生物合成途径关键步骤同工酶的编码基因OsDAD1-3OsLOX-RCI1OsAOS1OsAOCOsOPR7的表达在开颖时会有不同程度的上调,闭颖后又下调。同一稻穗上正在开放的颖花JA含量及上述JA生物合成途径基因的表达水平也比已开放和未开放的颖花高。颖花开放时JA水平及其生物合成基因表达的上升和闭颖后的下降有力地表明内源JA参与水稻颖花开放的调控。

关键词: 水稻, 颖花开放, 茉莉酸, 生物合成

Abstract:

Exogenously applied jasmonic acid (JA) or its methyl ester (MeJA) could significantly induce floret opening in gramineous plants such as rice, wheat, sorghum and rye. However, whether the endogenous JA is involved in the regulation of rice floret opening has remained unclear. To elucidate the role of endogenous JA in natural floret opening, we measured the JA levels in florets of Wuyunjing 7 (japonica cultivar) and Minghui 63 (indica cultivar) by HPLC-electrospray ionization tandem mass spectrometry system (HPLC-MS/MS) during natural anthesis, and analyzed the expression of key genes involved in JA biosynthesis in florets of Wuyunjing 7 by real-time reverse transcription-PCR (real-time RT-PCR). The results showed that the JA levels in rice florets were related with the process of anthesis. JA levels in rice florets kept relatively constant before anthesis in the morning, and reached a peak rapidly during anthesis, and then decreased after the floret closing. The peak levels of JA in opening florets were 4–5 times higher than that in florets 1 h before anthesis. Consistent with the changes of JA levels in florets during anthesis, the expression of OsDAD1-3, OsLOX-RCI1, OsAOS1, OsAOC,and OsOPR7 that encode isozymes catalyzing the key steps in JA biosynthetic pathway was up-regulated to some extent during floret opening, and was down-regulated after floret closing. Meanwhile, the levels of JA and transcripts of JA biosynthetic genes were higher in opening florets than in unopened or closed florets at the same panicle. The increasing of JA levels and transcripts of JA biosynthetic genes in florets at the time of opening and their decreasing in florets after closing strongly indicated that endogenous JA is involved in the regulation of floret opening in rice.

Key words: Rice (Oryza sativa L.), Floret opening, Jasmonic acid (JA), Biosynthesis

[1]Ding Y(丁颖). Rice Cultivation in China (中国水稻栽培学). Beijing: Agriculture Press, 1961. pp 87-89 (in Chinese)



[2]Zeng X C, Zhou X, Zhang W, Murofushi N, Kitahara T, Kamuro Y. Opening of rice floret in rapid response to methyl jasmonate. J Plant Growth Regul, 1999, 18: 153-158



[3]Kobayasi K, Matsui T, Yoshimoto M, Hasegawa T. Effects of temperature, solar radiation, and vapor-pressure deficit on flower opening time in rice. Plant Prod Sci, 2010, 13: 21-28.



[4]Nishiyama I, Blanco L. Artificial control of flower opening time during the day in rice plants: I. Preliminary experiments. Jpn J Crop Sci, 1981, 50: 59-66



[5]Wang Z(王忠), Gu Y-Z(顾蕴洁), Gao Y-Z(高煜珠). Studies on the mechanism rice glume-opening: II. Effect of CO2 on glume-opening. Acta Agron Sin (作物学报), 1989, 15(1): 59-66 (in Chinese with English abstract)



[6]Zeng X-C (曾晓春), Zhou X(周燮). Methyl jasmonate induces the opening of spikelets in rice. Acta Bot Sin (植物学报), 1999, 41(5): 560-562 (in Chinese with English abstract)



[7]Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot, 2007, 100: 681-697



[8]Liu S-J(刘世家), Xia K(夏凯), Zeng X-C(曾晓春), Zhou X(周燮). Inductive effect of methyl jasmonate (MeJA) on floret opening in wheat and its inhibition by salicylic aicd (SA). Acta Agron Sin (作物学报), 2001, 27(1): 123-126 (in Chinese with English abstract)



[9]Yan Z-F(闫芝芬), Zhou X(周燮), Ma C-J(马春红), Cui S-P(崔四平), Wei J-K(魏建昆). Inducing effect of coronatine and methyl jasmonate on the opening of spikelets in wheat, rye, mildew. Sci Agric Sin (中国农业科学), 2001, 34(3): 334-337 (in Chinese with English abstract)



[10]Gao X Q, Zeng X C, Xia K, Yoshihara T, Zhou X. Interactive effects of methyl jasmonate and salicylic acid on floret opening in spikelets of sorghum. Plant Growth Regul, 2004, 43: 269-273



[11]Zeng X-C(曾晓春), Zhou X(周燮), Wu X-Y(吴晓玉). Advances in study of opening mechanism in rice florets. Sci Agric Sin (中国农业科学), 2004, 37(2): 188-195 (in Chinese with English abstract)



[12]Creelman R, Mullet J. Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 355-381



[13]He Y, Fukushige H, Hildebrand D F, Gan S. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol, 2002, 128: 876-884



[14]Gan L-J(甘立军), Xia K(夏凯), Zhou X(周燮). Flunctuations of jasmonates in all floret parts during anthesis process in wheat. J Nanjing Agric Univ (南京农业大学学报), 2005, 28(2): 26-29 (in Chinese with English abstract)



[15]Gomi K, Satoh M, Ozawa R, Shinonaga Y, Sanada S, Sasaki K, Matsumura M., Ohashi Y, Kanno H, Akimitsu K, Takabayashi J. Role of hydroperoxide lyase in white-backed planthopper (Sogatella furcifera Horváth)-induced resistance to bacterial blight in rice, Oryza sativa L. Plant J, 2010, 61: 46-57



[16]Tani T, Sobajima H, Okada K, Chujo T, Arimura S, Tsutsumi N, Nishimura M, Seto H, Nojiri H, Yamane H. Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta, 2008, 227: 517-526



[17]Jain M, Nijhawan A, Tyagi A K, Khurana J P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun, 2006, 345: 646-651



[18]Ding X H, Cao Y H, Huang L L, Zhao J, Xu C G, Li X H, Wang S P. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell, 2008, 20: 228-240



[19]Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K. The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell, 2001, 13: 2191-2209



[20]Hirano K, Aya K, Hobo T, Sakakibara H, Kojima M, Shim R A, Hasegawa Y, Ueguchi-Tanaka M, Matsuoka M. Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant Cell Physiol, 2008, 49: 1429-1450



[21]Chehab E W, Perea J V, Gopalan B, Theg S, Dehesh K. Oxylipin pathway in rice and Arabidopsis. J Integr Plant Biol, 2007, 49: 43-51



[22]Song P(宋平), Xia K(夏凯), Wu C-W(吴传万), Bao D-P(包冬萍), Chen L-L(陈丽莉), Zhou X(周燮), Cao X-Z(曹显祖). Differential response of floret opening in male-sterile and male-fertile rices to methyl jasmonate. Acta Bot Sin (植物学报), 2001, 43(5): 480-485 (in Chinese with English abstract)



[23]Lin Z-C(林俊城), Tian X-H(田小海), Yin G-X(殷桂香), Tang J-H(汤吉洪), Yang Z-G(杨志刚). Artificial regulation of the flowering time of CMS lines in indica hybrid rice seed production. Sci Agric Sin (中国农业科学), 2008, 41(8): 2474-2479 (in Chinese with English abstract)



[24]Zhang W(张旺), Zeng X-C(曾晓春), Zhou X(周燮), Shen H-Y(沈惠源), Wu T-X(吴天锡). Application of methyl jasmonate (MeJA) in hybrid seed production of japonica rice. Hybrid Rice (杂交水稻), 2000, 15(3): 15-16 (in Chinese with English abstract)



[25]Huang Y-M(黄友明), Zeng X-C(曾晓春). Induction effect of jasmonic acid (JA) related compounds on floret opening in rice. Hubei Agric Sci (湖北农业科学), 2008, 47(10): 34-36 (in Chinese with English abstract)



[26]Laudert D, Schaller F, Weiler E W. Transgenic Nicotiana tabacum and Arabidopsis thaliana plants overexpressing allene oxide synthase. Planta, 2000, 211: 163-165



[27]Haga K, Iino M. Phytochrome-mediated transcriptional up-regulation of ALLENE OXIDE SYNTHASE in rice seedlings. Plant Cell Physiol, 2004, 45: 119-128



[28]Mei C, Qi M, Sheng G, Yang Y. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid PR gene expression, and host resistance to fungal infection. Mol Plant-Microbe Interact, 2006, 19: 1127-1137



[29]Schaffrath U, Zabbai F, Dudler R. Characterization of RCI-1, a chloroplastic rice lipoxygenase whose synthesis is induced by chemical plant resistance activators. Eur J Biochem, 2000, 267: 5935-5942



[30]Nagpal P, Ellis C M, Weber H, Ploense S E, Barkawi L S, Guilfoyle T J, Hagen G, Alonso J M, Cohen J D, Farmer E E, Ecker J R, Reed J W. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development, 2005, 132: 4107-4118



[31]Stintzi A, Browse J. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA, 2000, 97: 10625-10630



[32]Riemann M, Muller A, Korte A, Furuya M, Weiler E W, Nick P. Impaired induction of the jasmonate pathway in the rice mutant hebiba. Plant Physiol, 2003, 133: 1820-1830



[33]Riemann M, Riemann M, Takano M. Rice JASMONATE RESISTANT 1 is involved in phytochrome and jasmonate signaling. Plant Cell Environ, 2008, 31: 783-792



[34]Biswas K K, Neumann R., Haga K, Yatoh O, Iino M. Photomorphogenesis of rice seedlings: a mutant impaired in phytochrome-mediated inhibition of coleoptile growth. Plant Cell Physiol, 2003, 44: 242-254



[35]Heslop-Harrison Y, Heslop-Harrison J S. Lodicule function and filament extension in the grasses: potassium ion movement and tissue specialization. Ann Bot, 1996, 77: 573-582



[36]Wang Z(王忠), Gu Y-J(顾蕴洁), Gao Y-Z(高煜珠). Studies on the mechanism of the anthesis of rice: III. Structure of the lodicule and changes of its content during flowering. Acta Agron Sin (作物学报), 1991, 17(2): 96-101 (in Chinese with English abstract)



[37]Bin J-H(宾金华), Huang S-Q(黄胜琴), He S-C(何树春), He L-H(贺立红), Pan R-C(潘瑞炽). Effects of methyl jasmonate on the germination and the degradation of storage reserve in rice seed. Acta Bot Sin (植物学报), 2001, 43(6): 578-585 (in Chinese with English abstract)



[38]Evans N H. Modulation of guard cell plasma membrane potassium currents by methyl jasmonate. Plant Physiol, 2003, 131: 8-11



[39]Qin Y, Yang J, Zhao J. Calcium changes and the response to methyl jasmonate in rice lodicules during anthesis. Protoplasma, 2005, 225: 103-112

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!