欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (11): 2052-2060.doi: 10.3724/SP.J.1006.2012.02052

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

不同施氮水平下甘蓝型油菜发育种子中基因表达谱差异分析

闫贵欣,陈碧云,许鲲,高桂珍,吕培军,伍晓明*,李锋,李俊   

  1. 中国农业科学院油料作物研究所 / 农业部油料作物生物学与遗传育种重点实验室, 湖北武汉 430062
  • 收稿日期:2012-03-16 修回日期:2012-06-10 出版日期:2012-11-12 网络出版日期:2012-09-10
  • 通讯作者: 伍晓明, E-mail: wuxm@oilcrops.cn, Tel: 027-86812906
  • 基金资助:

    本研究由国家自然科学基金青年项目(31100911), 湖北省自然科学基金项目(2011CDB353)和国家重点基础研究计划(973计划)项目(2011CB109300)资助。

Differential Gene Expression Profiles in Developing Seeds of Brassica napus L. under Different Nitrogen Application Levels

YAN Gui-Xin,CHEN Bi-Yun,XU Kun,GAO Gui-Zhen,LÜ Pei-Jun,WU Xiao-Ming*,LI Feng,LI Jun   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
  • Received:2012-03-16 Revised:2012-06-10 Published:2012-11-12 Published online:2012-09-10
  • Contact: 伍晓明, E-mail: wuxm@oilcrops.cn, Tel: 027-86812906

摘要:

氮肥是油菜生长发育需要的重要营养元素之一, 增施氮肥可提高油菜籽产量和蛋白含量, 但降低种子含油量。筛选氮肥不敏感油菜基因型、发掘氮肥响应基因及调控网络研究尚不多见。本研究以油菜中双11和德国品种Parter为材料, 设置4个氮水平(施用尿素0、90、180和270 kg/hm–2), 随机区组试验, 利用Agilent油菜基因芯片在全基因组水平分析施氮(180 kg/hm–2)和未施氮(对照)处理授粉25 d种子的基因表达谱。结果显示, 随着施氮量的增加, 种子含油量降低, 而蛋白含量增加, 且在2个品种中的变化程度不同, Parter含油量的下降水平比中双11显著。处理与对照相比, 中双11和Parter分别有827个和3 676个差异表达基因, 明显存在基因型的差异; 2个品种中共同的差异表达基因有278个, 其中上调表达的151个, 下调表达的80个, 差异表达在10倍以上的基因有4个。根据基因功能注释, 2个品种中的差异表达基因分子功能主要为催化、结合和转录调节活性, 参与细胞、代谢和应激等生物过程, 约50%的差异基因未得到功能注释。选择8个差异表达基因进行实时荧光定量PCR分析, 结果显示2种方法的检测结果吻合率为94%, 表明检测结果具有一定的生物重复性。本结果为进一步筛选油菜氮肥敏感基因型、开展氮应答机制研究提供了有用信息。

关键词: 基因芯片, 氮肥, 含油量和蛋白含量, 差异表达基因, 实时荧光定量PCR

Abstract:

Nitrogen is one of the major fertilizers to Brassica napus L., it has concluded that increasing nitrogen would raise seed yield, enhance protein abundance but decrease oil content. Up-to-date, little is known on screening nitrogen-tolerant B. napus and identifying nitrogen-response genes and their networks. In the paper, we designed four nitrogen application levels (0, 90, 180, and 270 kg ha–1) using Brassica napus accessions Zhongshuang 11 and Parter (from Germany) with randomized block design. The results indicated that the seed protein content increased whereas oil content decreased with increasing nitrogen levels. There existed variance in protein and oil contents between Zhongshuang 11 and Parter. The comparison of 25 DAP seeds by Agilent oilseed microarrays at the whole-genome level between 180 kg ha–1 nitrogen fertilizer treatment and CK showed that Zhongshuang 11 contained 827 differential expressed genes, Parter comprised 3 676 differentially expressed genes, and two varieties jointly shared 278 differentially expressed genes, including 151 genes up-regulated and 80 genes down-regulated, and four genes with at least 10-fold difference expression. The functional classification of differentially expressed genes indicated that they mainly had binding, catalytic activities and transcriptional regulation activities. Most of them were involved in cellular, metabolic, and stimulative processes. The genes (about 50%) without function annotation should be studied further. Additionally, the expression of eight differentially expressed genes was validated by Quantitative RT-PCR. The results from e two methods were 94% consistent, which indicated that the microarray results were biologically reproducible. Our results shade light on exploring mechanism of nitrogen response and nitrogen-tolerance genotype identification in B. napus.

Key words: Microarray, Nitrogen fertilizer, Oil and protein content, Differentially expressed genes, Quantitative RT-PCR

[1]USDA. Foreign Agricultural Service Oilseeds: World Markets and Trade Monthly Circular. [2010-05-11] http://www.fas.usda.gov/oilseeds/circular/ Current.asp



[2]Liu H-L(刘后利). Practical Cultivation of Rapeseed (实用油菜栽培学). Shanghai: Scientific Technology Press, 1987 (in Chinese)



[3]Li Z-Y(李志玉), Guo Q-Y(郭庆元), Liao X(廖星), Qin Y-P(秦亚平). Effects of different amount of nitrogen on yield, quality and economics of Zhongshuang No.9. Chin J Oil Crop Sci (中国油料作物学报), 2007, 29(2): 78–82 (in Chinese with English abstract)



[4]Liu C-Z(刘昌智), Cai C-B(蔡常被), Chen Z-X(陈仲西), Tu Y-C(涂运昌), Li Z-Y(李致云). Effects of nitrogen, phosphorus and potassium on yield protein and oil content of oilseed. Oil Crop China (中国油料), 1982, (3): 25–29 (in Chinese)



[5]Zhao H-J(赵合句), Li P-W(李培武), Li G-M(李光明), Lu S-G(陆师国). Effects of fertilizer dressing on biochemical qualities in quality rape (Brassica napus). Acta Agron Sin (作物学报), 1991, 7(4): 255–259 (in Chinese with English abstract)



[6]Zhou N-N(周年年). The Research on the Nitorgen’s Effect on Rapeseed Yield and Quality and Relevant Analysis. MS Disseratation of Huazhong Agricultural University, 2005 (in Chinese with English abstract)



[7]Zhao J-X(赵继献), Cheng G-P(程国平), Ren T-B(任廷波), Gao Z-H(高志宏). Effect of different nitrogen rates on yield and quality parameters of high grade yellow seed hybrid rape. Plant Nutr Fert Sci (植物营养与肥料学报), 2007, 13(5): 882–889 (in Chinese with English abstract)



[8]Wilcox J R. Increasing seed protein in soybean with eight cycles of recurrent selection. Crop Sci, 1998, 38: 1536–40



[9]Chung J, Babka H L, Graef G L, Staswick P E, Lee D J, Cregan P B, Shoemaker R C, Specht J E. The seed protein, oil and yield QTL on soybean linkage group I. Crop Sci, 2003, 43: 1053–1067



[10]Beisson F, Koo A J, Ruuska S, Schwender J, Pollard M, Thelen J J, Paddock T, Salas J J, Savage L, Milcamps A, Mhaske V B, Cho Y, Ohlrogge J B. Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol, 2003, 132: 681–697



[11]Nanjo T, Fujita M, Seki M, Kato T, Tabata S, Shinozaki K. Toxicity of free proline revealed in a Arabidopsis T-DNA-Tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol, 2003, 44: 541–548



[12]Lorkowski S, Cullen P M. Analysing Gene Expression: a Handbook of Methods Possibilities and Pitfalls. New York: John Wiley and Sons, Inc. 2003



[13]Schena M, Shalon D, Davis R W, Brown P O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270: 467–470



[14]Scheible W R, Fry B, Kochevenko A, Schindelasch D, Zimmerli L, Somerville S, Loria R, Somerville C R. An Arabidopsis mutant resistant to thaxtomin A, a cellulose synthesis inhibitor from Streptomyces species. Plant Cell, 2003, 15: 1781–1794



[15]Fu S-X(付三雄), Qi C-K(戚存扣). Identification of genes differentially expressed in seeds of Brassica napus planted in Nanjing and Lhasa by Arabidopsis microarray. Chin Bull Bot (植物学报), 2009, 44(2): 178–184 (in Chinese with English abstract)



[16]Trick M, Cheung F, Drou N, Fraser F, Lobenhofer E K, Hurban P, Magusin A, Town C D, Bancroft I. A newly-developed community microarray resource for transcriptome profiling in Brassica species enables the confirmation of Brassica-specific expressed sequences. BMC Plant Biol, 2009, 9: 50–59



[17]Hu Y, Wu G, Cao Y, Wu Y, Xiao L, Li X, Lu C. Breeding response of transcript profiling in developing seeds of Brassica napus. BMC Mol Biol, 2009, 10: 49–65



[18]Vicient C M, Delseny M. Isolation of total RNA from Arabidopsis thaliana seeds. Anal Biochem, 1999, 268: 412–413



[19]Livak K J., Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method. Methods, 2001, 25: 402–408



[20]Udall J A, Flagel L E, Cheung F, Woodward A W, Hovav R, Rapp R A, Swanson J M, Lee J J, Gingle A R, Nettleton D, Town C D, Chen Z J, Wendel J F. Spotted cotton oligonucleotide microarrays for gene expression analysis. BMC Genomics, 2007, 8: 1471–2164



[21]Li L-Y(李龙云), Yu W-W(于霁雯), Zhai H-H(翟红红), Huang S-L(黄双领), Li X-L(李兴丽), Zhang H-W(张红卫), Zhang J-F(张金发), Yu S-X(喻树迅). Identification of fiber length-related genes using cotton oligonucleotide microarrays. Acta Agron Sin (作物学报), 2011, 37(1): 95–104 (in Chinese with English abstract)



[22]Desclos M, Dubousset L, Etienne P, Caherec F L, Satoh H, Bonnefoy J, Ourry A, Avice J C. A Proteomic Profiling approach to reveal a novel role of Brassica napus drought 22 kD/Water-Soluble chlorophyll-binding protein in young Leaves during nitrogen remobilization induced by stressful conditions. Plant Physiol, 2008, 147: 1830–1844[23] Cheng X, Blumenthal R M. S-Adenosylmethionine-Dependent Methyltransferases: Structures and Functions, Singapore: World Scientific, 1999. pp 5–8



[24]Spartz A K, Gray W M. Plant hormone receptors: New perceptions. Gene Dev, 2008, 22: 2139–2148



[25]Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 2005, 435: 446–451



[26]Wang D, Pajerowska-Mukhtar K, Culler A H, Dong X. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol, 2007, 17:1784–1790

[1] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[2] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[3] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[6] 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422.
[7] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[8] 蹇述莲, 李书鑫, 刘胜群, 李向楠. 覆盖作物及其作用的研究进展[J]. 作物学报, 2022, 48(1): 1-14.
[9] 颜为, 李芳军, 徐东永, 杜明伟, 田晓莉, 李召虎. 行距与氮肥或甲哌鎓化控对棉花冠层结构、温度和相对湿度的影响[J]. 作物学报, 2021, 47(9): 1654-1665.
[10] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[11] 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响[J]. 作物学报, 2021, 47(8): 1603-1615.
[12] 柯健, 陈婷婷, 徐浩聪, 朱铁忠, 吴汉, 何海兵, 尤翠翠, 朱德泉, 武立权. 控释氮肥运筹对钵苗摆栽籼粳杂交稻甬优1540产量及氮肥利用的影响[J]. 作物学报, 2021, 47(7): 1372-1382.
[13] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[14] 黄文功, 姜卫东, 姚玉波, 宋喜霞, 刘岩, 陈思, 赵东升, 吴广文, 袁红梅, 任传英, 孙中义, 吴建忠, 康庆华. 亚麻响应低钾胁迫转录谱分析[J]. 作物学报, 2021, 47(6): 1070-1081.
[15] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!