作物学报 ›› 2012, Vol. 38 ›› Issue (11): 2052-2060.doi: 10.3724/SP.J.1006.2012.02052
闫贵欣,陈碧云,许鲲,高桂珍,吕培军,伍晓明*,李锋,李俊
YAN Gui-Xin,CHEN Bi-Yun,XU Kun,GAO Gui-Zhen,LÜ Pei-Jun,WU Xiao-Ming*,LI Feng,LI Jun
摘要:
氮肥是油菜生长发育需要的重要营养元素之一, 增施氮肥可提高油菜籽产量和蛋白含量, 但降低种子含油量。筛选氮肥不敏感油菜基因型、发掘氮肥响应基因及调控网络研究尚不多见。本研究以油菜中双11和德国品种Parter为材料, 设置4个氮水平(施用尿素0、90、180和270 kg/hm–2), 随机区组试验, 利用Agilent油菜基因芯片在全基因组水平分析施氮(180 kg/hm–2)和未施氮(对照)处理授粉25 d种子的基因表达谱。结果显示, 随着施氮量的增加, 种子含油量降低, 而蛋白含量增加, 且在2个品种中的变化程度不同, Parter含油量的下降水平比中双11显著。处理与对照相比, 中双11和Parter分别有827个和3 676个差异表达基因, 明显存在基因型的差异; 2个品种中共同的差异表达基因有278个, 其中上调表达的151个, 下调表达的80个, 差异表达在10倍以上的基因有4个。根据基因功能注释, 2个品种中的差异表达基因分子功能主要为催化、结合和转录调节活性, 参与细胞、代谢和应激等生物过程, 约50%的差异基因未得到功能注释。选择8个差异表达基因进行实时荧光定量PCR分析, 结果显示2种方法的检测结果吻合率为94%, 表明检测结果具有一定的生物重复性。本结果为进一步筛选油菜氮肥敏感基因型、开展氮应答机制研究提供了有用信息。
[1]USDA. Foreign Agricultural Service Oilseeds: World Markets and Trade Monthly Circular. [2010-05-11] http://www.fas.usda.gov/oilseeds/circular/ Current.asp[2]Liu H-L(刘后利). Practical Cultivation of Rapeseed (实用油菜栽培学). Shanghai: Scientific Technology Press, 1987 (in Chinese)[3]Li Z-Y(李志玉), Guo Q-Y(郭庆元), Liao X(廖星), Qin Y-P(秦亚平). Effects of different amount of nitrogen on yield, quality and economics of Zhongshuang No.9. Chin J Oil Crop Sci (中国油料作物学报), 2007, 29(2): 78–82 (in Chinese with English abstract)[4]Liu C-Z(刘昌智), Cai C-B(蔡常被), Chen Z-X(陈仲西), Tu Y-C(涂运昌), Li Z-Y(李致云). Effects of nitrogen, phosphorus and potassium on yield protein and oil content of oilseed. Oil Crop China (中国油料), 1982, (3): 25–29 (in Chinese)[5]Zhao H-J(赵合句), Li P-W(李培武), Li G-M(李光明), Lu S-G(陆师国). Effects of fertilizer dressing on biochemical qualities in quality rape (Brassica napus). Acta Agron Sin (作物学报), 1991, 7(4): 255–259 (in Chinese with English abstract)[6]Zhou N-N(周年年). The Research on the Nitorgen’s Effect on Rapeseed Yield and Quality and Relevant Analysis. MS Disseratation of Huazhong Agricultural University, 2005 (in Chinese with English abstract)[7]Zhao J-X(赵继献), Cheng G-P(程国平), Ren T-B(任廷波), Gao Z-H(高志宏). Effect of different nitrogen rates on yield and quality parameters of high grade yellow seed hybrid rape. Plant Nutr Fert Sci (植物营养与肥料学报), 2007, 13(5): 882–889 (in Chinese with English abstract)[8]Wilcox J R. Increasing seed protein in soybean with eight cycles of recurrent selection. Crop Sci, 1998, 38: 1536–40[9]Chung J, Babka H L, Graef G L, Staswick P E, Lee D J, Cregan P B, Shoemaker R C, Specht J E. The seed protein, oil and yield QTL on soybean linkage group I. Crop Sci, 2003, 43: 1053–1067[10]Beisson F, Koo A J, Ruuska S, Schwender J, Pollard M, Thelen J J, Paddock T, Salas J J, Savage L, Milcamps A, Mhaske V B, Cho Y, Ohlrogge J B. Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol, 2003, 132: 681–697[11]Nanjo T, Fujita M, Seki M, Kato T, Tabata S, Shinozaki K. Toxicity of free proline revealed in a Arabidopsis T-DNA-Tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol, 2003, 44: 541–548[12]Lorkowski S, Cullen P M. Analysing Gene Expression: a Handbook of Methods Possibilities and Pitfalls. New York: John Wiley and Sons, Inc. 2003[13]Schena M, Shalon D, Davis R W, Brown P O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270: 467–470[14]Scheible W R, Fry B, Kochevenko A, Schindelasch D, Zimmerli L, Somerville S, Loria R, Somerville C R. An Arabidopsis mutant resistant to thaxtomin A, a cellulose synthesis inhibitor from Streptomyces species. Plant Cell, 2003, 15: 1781–1794[15]Fu S-X(付三雄), Qi C-K(戚存扣). Identification of genes differentially expressed in seeds of Brassica napus planted in Nanjing and Lhasa by Arabidopsis microarray. Chin Bull Bot (植物学报), 2009, 44(2): 178–184 (in Chinese with English abstract)[16]Trick M, Cheung F, Drou N, Fraser F, Lobenhofer E K, Hurban P, Magusin A, Town C D, Bancroft I. A newly-developed community microarray resource for transcriptome profiling in Brassica species enables the confirmation of Brassica-specific expressed sequences. BMC Plant Biol, 2009, 9: 50–59[17]Hu Y, Wu G, Cao Y, Wu Y, Xiao L, Li X, Lu C. Breeding response of transcript profiling in developing seeds of Brassica napus. BMC Mol Biol, 2009, 10: 49–65[18]Vicient C M, Delseny M. Isolation of total RNA from Arabidopsis thaliana seeds. Anal Biochem, 1999, 268: 412–413 [19]Livak K J., Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method. Methods, 2001, 25: 402–408 [20]Udall J A, Flagel L E, Cheung F, Woodward A W, Hovav R, Rapp R A, Swanson J M, Lee J J, Gingle A R, Nettleton D, Town C D, Chen Z J, Wendel J F. Spotted cotton oligonucleotide microarrays for gene expression analysis. BMC Genomics, 2007, 8: 1471–2164[21]Li L-Y(李龙云), Yu W-W(于霁雯), Zhai H-H(翟红红), Huang S-L(黄双领), Li X-L(李兴丽), Zhang H-W(张红卫), Zhang J-F(张金发), Yu S-X(喻树迅). Identification of fiber length-related genes using cotton oligonucleotide microarrays. Acta Agron Sin (作物学报), 2011, 37(1): 95–104 (in Chinese with English abstract)[22]Desclos M, Dubousset L, Etienne P, Caherec F L, Satoh H, Bonnefoy J, Ourry A, Avice J C. A Proteomic Profiling approach to reveal a novel role of Brassica napus drought 22 kD/Water-Soluble chlorophyll-binding protein in young Leaves during nitrogen remobilization induced by stressful conditions. Plant Physiol, 2008, 147: 1830–1844[23] Cheng X, Blumenthal R M. S-Adenosylmethionine-Dependent Methyltransferases: Structures and Functions, Singapore: World Scientific, 1999. pp 5–8[24]Spartz A K, Gray W M. Plant hormone receptors: New perceptions. Gene Dev, 2008, 22: 2139–2148[25]Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 2005, 435: 446–451 [26]Wang D, Pajerowska-Mukhtar K, Culler A H, Dong X. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol, 2007, 17:1784–1790 |
[1] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[2] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[3] | 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681. |
[4] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[5] | 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409. |
[6] | 张军, 周冬冬, 许轲, 李必忠, 刘忠红, 周年兵, 方书亮, 张永进, 汤洁, 安礼政. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹[J]. 作物学报, 2022, 48(2): 410-422. |
[7] | 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192. |
[8] | 蹇述莲, 李书鑫, 刘胜群, 李向楠. 覆盖作物及其作用的研究进展[J]. 作物学报, 2022, 48(1): 1-14. |
[9] | 颜为, 李芳军, 徐东永, 杜明伟, 田晓莉, 李召虎. 行距与氮肥或甲哌鎓化控对棉花冠层结构、温度和相对湿度的影响[J]. 作物学报, 2021, 47(9): 1654-1665. |
[10] | 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679. |
[11] | 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响[J]. 作物学报, 2021, 47(8): 1603-1615. |
[12] | 柯健, 陈婷婷, 徐浩聪, 朱铁忠, 吴汉, 何海兵, 尤翠翠, 朱德泉, 武立权. 控释氮肥运筹对钵苗摆栽籼粳杂交稻甬优1540产量及氮肥利用的影响[J]. 作物学报, 2021, 47(7): 1372-1382. |
[13] | 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042. |
[14] | 黄文功, 姜卫东, 姚玉波, 宋喜霞, 刘岩, 陈思, 赵东升, 吴广文, 袁红梅, 任传英, 孙中义, 吴建忠, 康庆华. 亚麻响应低钾胁迫转录谱分析[J]. 作物学报, 2021, 47(6): 1070-1081. |
[15] | 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137. |
|