作物学报 ›› 2012, Vol. 38 ›› Issue (12): 2198-2205.
蔡健1,张桂权2,*
CAI Jian1,ZHANG Qui-Quan2,*
摘要:
由华南农业大学选育的水稻单片段代换系S15对于野败型(WA)和矮败型(DA)细胞质雄性不育系均具有较强的恢复性。以野败型不育系博白A和矮败型不育系协青早A为母本, 单片段代换系S15为父本杂交, 采用分子标记辅助选择和连续回交的方法构建了两个BC3F2群体。利用与第1、第10染色体上恢复基因Rf3和Rf4两侧紧密连锁的SSR标记, 从这2个BC3F2群体中筛选携带基因型Rf3Rf3/rf4rf4和rf3rf3/Rf4Rf4的单株, 观察这些单株花粉和小穗育性, 并利用202个多态性SSR标记分析这些单株的遗传背景, 结果表明: (1)在同一细胞核背景下(S15), DA型细胞质的可恢复性好于WA型细胞质, 单片段代换系S15中的恢复基因Rf4的恢复力大于恢复基因Rf3的恢复力。(2)单片段代换系S15中的恢复基因对于WA型不育系博白A和DA型不育系协青早A表现出质量-数量性状的遗传。在单片段代换系S15中, 除了主效恢复基因Rf3和Rf4外, 微效基因或者修饰基因也表现出对于博白A和协青早A的恢复性作用, 而且效应较大。(3)在构建的2个BC3F2群体中, 携带基因型Rf3Rf3/rf4rf4和rf3rf3/Rf4Rf4单株的遗传背景片段数平均为1.0, 对应于恢复基因Rf3和Rf4座位的代换片段平均长度分别为12.9 cM和18.4 cM。
[1]Hanson M R, Conde M F. Functioning and variation of cytoplasmic genomes: lessons from cytoplasmic-nuclear interactions affecting male fertility in plants. Int Rev Cytol, 1985, 94: 213-267[2]Kaul M L H. Male sterility in higher plants. In: Monograph on Theoretical and Applied Genetics, 1988, Vol. 10. Berlin: Springer-Verlag [3]Bentolila S, Alfonso A A, Hanson M R. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male sterile plants. Proc Natl Acad Sci USA, 2002, 99: 10887-10892[4]Yuan L P, Virmani S S. Status of hybrid rice research and development. In: Smith W H, Bostian L R, Cervantes E, eds. Hybrid Rice. Manila, Philippines: International Rice Research Institute, 1988. pp 7-24[5]Xie J K, Zuang J Y, Fan Y Y, Tu G Q., Xia Y W, Zheng K L. Mapping of fertility restoring genes with main effects and epistatic effects for CMS-DA in rice. Acta Genet Sin, 2002, 29: 565-570[6]Shinjyo C. Cytoplasmic-genetic male sterility in cultivated rice (Oryza sativa L.): II. The inheritance of male sterility. Jpn J Genet, 1969, 44:149-156[7]Rao Y S. Cytohistology of cytoplasmic male sterile lines in hybrid rice. In: Smith W H, Bostian L R, Cervantes E, eds. Hybrid Rice. Manila, Philippines: International Rice Research Institute, 1988. pp 115-128[8]Hanson M R, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophytic development. Plant Cell, 2004, 16: S154-S169[9]Zhang G, Bharaj T S, Virmani S S, Huang N. Mapping of the Rf-3 nuclear fertility-restoring gene for WA cytoplasmic male sterility in rice using RAPD and RFLP markers. Theor Appl Genet, 1997, 94: 27-33[10]Li S, Yang D C, Zhu Y G. Characterization and use of male sterility in hybrid rice breeding. J Integr Plant Biol, 2007, 49: 791-804[11]Fujii S, Toriyama K. Suppressed expression of RETROGRADE- REGULATED MALE STERILITY restores pollen fertility in cytoplasmic male sterile rice plants. Proc Natl Acad Sci USA, 2009, 106: 9513-9518[12]Yao F Y, Xu C G, Yu S B, Li J X, Gao Y J, Li X H, Zhang Q. Mapping and genetic analysis of two fertility restorer loci in the wild abortive cytoplasmic male sterility system of rice (Oryza sativa L.). Euphytica, 1997, 98: 183-187[13]Zhang Q Y, Liu Y G, Mei M T. Molecular mapping of the fertility restorer gene Rf4 for WA cytoplasmic male sterility. Acta Genet Sin, 2002, 29:1001-1004[14]Komori T, Yamamoto T, Takemori N, Kashihara M, Matsushima H, Nitta N. Fine genetic mapping of the restorer gene, Rf-1 that restores the BT-type cytoplasmic male sterility in rice (Oryza sativa L.) by PCR based markers. Euphytica, 2003, 129: 241-247[15]Akagi H, Nakamura A, Yokozeki-Misono Y, Inagaki A, Takahashi H, Mori K, Fujimura T. Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein. Theor Appl Genet, 2004, 108: 1449-1457[16]Liu X Q, Xu X, Tan Y P, Li S Q, Hu J, Huang J Y, Yang D C, Li Y S, Zhu Y G. Inheritance and molecular mapping of two fertility-restoring loci for Honglian gametophytic cytoplasmic male sterility in rice (Oryza sativa L.). Mol Gen Genomics, 2004, 271: 586-594[17]Wang Z H, Zou Y J, Li X Y, Zhang Q Y, Chen L T, Wu H, Su D H, Chen Y L, Guo J X, Luo D, Long Y M, Zhong Y, Liu Y G. Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell, 2006, 18: 676-687[18]Sheeba N K, Viraktamath B C, Sivaramakrishnan S, Gangashetti M G, Khera P, Sundaram R M. Validation of molecular markers linked to fertility restorer gene(s) for WA-CMS lines of rice. Euphytica, 2009, 167: 217-227[19]Ngangkham U, Parida S K, De S, Kumar A R, Singh A K, Singh N K, Mohapatra T. Genic markers for wild abortive (WA) cytoplasm based male sterility and its fertility restoration in rice. Mol Breed, 2010, 26: 275-292[20]Zhang G Q, Zeng R Z, Zhang Z M, Ding X H, Li W T, Liu G M, He F H, Tulukdar A, Huang C F, Xi Z Y, Qin L J, Shi J Q, Zhao F M, Feng M J, Shan Z L, Chen L, Guo X Q, Zhu H T, Lu Y G. The construction of a library of single segment substitution lines in rice (Oryza sativa L.). Rice Genet Newsl, 2004, 21:85-87[21]He F-H(何风华), Xi Z-Y(席章营), Talukdar A, Zhang G-Q(张桂权). Identification of QTLs for plant height and its components by using single segment substitution lines in rice (Oryza sativa L.). Rice Sci (水稻科学), 2005, 12(3): 151-156 (in Chinese with English abstract)[22]Xi Z Y, He F H, Zeng R Z, Zhang Z M, Ding X H, Li W T, Zhang G Q. Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome, 2006, 49: 476-484[23]Liu G-M(刘桂富), Li W-T(李文涛), Zeng R-Z(曾瑞珍), Zhang G-Q(张桂权). Development of single segment substitution lines (SSSLs) of subspecies in rice. Chin J Rice Sci (中国水稻科学), 2003, 17: 201-204 (in Chinese with English abstract)[24]McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B, Maghiran R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Jellstrom R F, Declerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9: 199-207[25]Zheng K L, Huang N, Bennett J, Khush G S. PCR based marker-assisted selection in rice breeding. In: IRRI Discussion Paper Series. No. 12. Manila, Philippines: International Rice Research Institute, 1995[26]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSPL) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597-607[27]Hospital F. Marker-assisted backcross breeding: a case study in genotype building theory. In: Kang M S ed. Quantitative Genetics, Genomics and Plant Breeding. Wallingford, UK: CABI Publishing, 2002[28]Zhang G-Q(张桂权), Liu Y-G(卢永根). Genetic studies of the hybird sterility in cultivated rice (Oryza sativa): I. Diallel analysis of the hybird sterility among isogenic F1 sterile lines. Chin J Rice Sci (中国水稻科学), 1989, 3: 97-101 (in Chinese with English abstract)[29]Gabay-Laughnan S, Laughnan J R. Male sterility and restorer genes in maize. In: Freeling M, Walbot V, eds. The Maize Handbook. New York: Springer, 1994. pp 418-423[30]Taylor D R, Olson M S, McCauley D E. A quantitative genetic analysis of nuclear-cytoplasmic male sterility in structured populations of Silene vulgaris. Genetics, 2001, 158: 833-841[31]Van Damme J M M, Hundscheid M P J, Ivanovic S, Koelewijn H P. Multiple CMS-restorer gene polymorphism in gynodioecious Plantago coronopus. Heredity, 2004, 93: 175-181[32]Fu H W, Xue Q Z. Analysis of restoring genes of three type of cytoplasmic male sterility in rice. Mol Plant Breed, 2004, 2: 336-341[33]Govinda R K, Virmani S S. Genetics of fertility restoration of ‘WA’ type cytoplasmic male sterility in rice. Crop Sci, 1988, 28: 787-792[34]Zhuang J-Y(庄杰云), Fan Y-Y(樊叶杨), Wu J-L(吴建利), Rao Z-M(饶志明), Xia Y-W(夏英武), Zheng K-L(郑康乐). Maping genes for rice CMS-WA fertility restoration. Acta Genet Sin (遗传学报), 2001, 28(2): 129-134 (in Chinese with English abstract) [35]Xu C-G(徐才国), Tang W-J(唐为江), Xing Y-Z(邢永忠). Separate restorability evaluation of two fertility restorer genes in the rice restorer line, Minghui 63. Mol Plant Breed (分子植物育种), 2003, 1(4): 497-501 (in Chinese with English abstract) [36]Pradhan S B, Jachuck P J. Genetics of fertility restoration of elite lines for different cytoplasmic male sterile sources in rice. Oryza, 1999, 36: 374-376[37]Tao D Y, Xu P, Li J, Hu F Y, Yang Y Q, Zhou J W, Tan X L, Jones M P. Inheritance and mapping of male sterility restoration gene in upland japonica restorer lines. Euphytica, 2004, 138: 247-254[39]Singh A K, Mahapatra T, Prabhu K V, Singh V P, Zaman F U, Mishra G P, Nandakumar N, Joseph M, Gopalakrishnan S, Aparajita G, Tyagi N K, Prakash P, Sharma R K, Shab U S, Singh S K. Application of molecular markers in rice breeding: progress at IARI. In: Advances in Marker Assisted Selection Workshop. Trainee’s manual, Handouts and references, 2005 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|