欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (12): 2198-2205.

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

Evaluation of Restorability of Two Fertility Restorer Genes in the Rice Chromosome Single Segment Substitution Lines (SSSLs)

蔡健1,张桂权2,*   

  1. 1 阜阳师范学院生命科学学院, 安徽阜阳 236041; 2 华南农业大学植物分子育种重点实验室?, 广东广州510642
  • 收稿日期:2012-04-09 修回日期:2012-07-05 出版日期:2012-12-12 网络出版日期:2012-09-10
  • 通讯作者: ZHANG Gui-Quan, E-mail: gzhang@scau.edu.cn
  • 基金资助:

    This work was supported by National Natural Science Foundation of China (30830074) and Department of Education of Anhui Province Natural Science Foundation of China (No. KJ2010B155).

Evaluation of Restorability of Two Fertility Restorer Genes in the Rice Chromosome Single Segment Substitution Lines (SSSLs)

CAI Jian1,ZHANG Qui-Quan2,*   

  1. 1 School of Life Science, Fuyang Teachers College, Fuyang 236041, China; 2 Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
  • Received:2012-04-09 Revised:2012-07-05 Published:2012-12-12 Published online:2012-09-10
  • Contact: ZHANG Gui-Quan, E-mail: gzhang@scau.edu.cn
  • Supported by:

    This work was supported by National Natural Science Foundation of China (30830074) and Department of Education of Anhui Province Natural Science Foundation of China (No. KJ2010B155).

摘要:

由华南农业大学选育的水稻单片段代换系S15对于野败型(WA)和矮败型(DA)细胞质雄性不育系均具有较强的恢复性。以野败型不育系博白A和矮败型不育系协青早A为母本, 单片段代换系S15为父本杂交, 采用分子标记辅助选择和连续回交的方法构建了两个BC3F2群体。利用与第1、第10染色体上恢复基因Rf3Rf4两侧紧密连锁的SSR标记, 从这2个BC3F2群体中筛选携带基因型Rf3Rf3/rf4rf4rf3rf3/Rf4Rf4的单株, 观察这些单株花粉和小穗育性, 并利用202个多态性SSR标记分析这些单株的遗传背景, 结果表明: (1)在同一细胞核背景下(S15), DA型细胞质的可恢复性好于WA型细胞质, 单片段代换系S15中的恢复基因Rf4的恢复力大于恢复基因Rf3的恢复力。(2)单片段代换系S15中的恢复基因对于WA型不育系博白A和DA型不育系协青早A表现出质量-数量性状的遗传。在单片段代换系S15中, 除了主效恢复基因Rf3Rf4外, 微效基因或者修饰基因也表现出对于博白A和协青早A的恢复性作用, 而且效应较大。(3)在构建的2个BC3F2群体中, 携带基因型Rf3Rf3/rf4rf4rf3rf3/Rf4Rf4单株的遗传背景片段数平均为1.0, 对应于恢复基因Rf3Rf4座位的代换片段平均长度分别为12.9 cM和18.4 cM。

关键词: 水稻, 染色体单片段代换系, 野败型(WA), 矮败型(DA), 恢复基因(Rf)

Abstract:

Rice chromosome single segment substitution line (SSSL) S15, a strong restorer line for WA-, and DA-CMS, was recently isolatedat Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University. The present study was carried out with the objective to investigatethe genetic mode of fertility restorer (Rf) genes and the genetic relationship between WA- and DA-CMS systems. The SSSL S15 was used to pollinate WA-CMS line of BobaiA and DA-CMS line of XieqingzaoA producing two BC3F2 populations by using marker-assisted selection (MAS) and traditional backcrossing. The results were as follows: (1) The genetic effect showed a trend of WA-CMS > DA-CMS in the genetic background of SSSL S15, and the effect of Rf4 was slightly larger than that of Rf3 for the two CMS systems. (2) Two pairs of dominant genes governed pollen fertility restoration, and some modifying or minor genes were involved in inheritance of restorer ability besides Rf3 or Rf4 in SSSL S15, displaying that the genetic mode of Rf genes showed a qualitative-quantitative character for WA-, and DA-CMS system. (3) When 202 SSR markers were used to analyze the genetic background and average length of substituted chromosome segments of the two BC3F2 individuals, carrying the genotypes Rf3Rf3/rf4rf4 or rf3rf3/Rf4Rf4, the mean of segments of inherited background of them was 1.0, while the average lengths of the substituted chromosome segments, corresponding to Rf3 and Rf4 loci, of them were 12.9 cM and 18.4 cM, respectively.

Key words: Rice, Chromosome single segment substitution lines (SSSLs), Wild abortive (WA), Dwarf-wild-abortive (DA), Restorer gene (Rf )

[1]Hanson M R, Conde M F. Functioning and variation of cytoplasmic genomes: lessons from cytoplasmic-nuclear interactions affecting male fertility in plants. Int Rev Cytol, 1985, 94: 213-267



[2]Kaul M L H. Male sterility in higher plants. In: Monograph on Theoretical and Applied Genetics, 1988, Vol. 10. Berlin: Springer-Verlag



[3]Bentolila S, Alfonso A A, Hanson M R. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male sterile plants. Proc Natl Acad Sci USA, 2002, 99: 10887-10892



[4]Yuan L P, Virmani S S. Status of hybrid rice research and development. In: Smith W H, Bostian L R, Cervantes E, eds. Hybrid Rice. Manila, Philippines: International Rice Research Institute, 1988. pp 7-24



[5]Xie J K, Zuang J Y, Fan Y Y, Tu G Q., Xia Y W, Zheng K L. Mapping of fertility restoring genes with main effects and epistatic effects for CMS-DA in rice. Acta Genet Sin, 2002, 29: 565-570



[6]Shinjyo C. Cytoplasmic-genetic male sterility in cultivated rice (Oryza sativa L.): II. The inheritance of male sterility. Jpn J Genet, 1969, 44:149-156



[7]Rao Y S. Cytohistology of cytoplasmic male sterile lines in hybrid rice. In: Smith W H, Bostian L R, Cervantes E, eds. Hybrid Rice. Manila, Philippines: International Rice Research Institute, 1988. pp 115-128



[8]Hanson M R, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophytic development. Plant Cell, 2004, 16: S154-S169



[9]Zhang G, Bharaj T S, Virmani S S, Huang N. Mapping of the Rf-3 nuclear fertility-restoring gene for WA cytoplasmic male sterility in rice using RAPD and RFLP markers. Theor Appl Genet, 1997, 94: 27-33



[10]Li S, Yang D C, Zhu Y G. Characterization and use of male sterility in hybrid rice breeding. J Integr Plant Biol, 2007, 49: 791-804



[11]Fujii S, Toriyama K. Suppressed expression of RETROGRADE- REGULATED MALE STERILITY restores pollen fertility in cytoplasmic male sterile rice plants. Proc Natl Acad Sci USA, 2009, 106: 9513-9518



[12]Yao F Y, Xu C G, Yu S B, Li J X, Gao Y J, Li X H, Zhang Q. Mapping and genetic analysis of two fertility restorer loci in the wild abortive cytoplasmic male sterility system of rice (Oryza sativa L.). Euphytica, 1997, 98: 183-187



[13]Zhang Q Y, Liu Y G, Mei M T. Molecular mapping of the fertility restorer gene Rf4 for WA cytoplasmic male sterility. Acta Genet Sin, 2002, 29:1001-1004



[14]Komori T, Yamamoto T, Takemori N, Kashihara M, Matsushima H, Nitta N. Fine genetic mapping of the restorer gene, Rf-1 that restores the BT-type cytoplasmic male sterility in rice (Oryza sativa L.) by PCR based markers. Euphytica, 2003, 129: 241-247



[15]Akagi H, Nakamura A, Yokozeki-Misono Y, Inagaki A, Takahashi H, Mori K, Fujimura T. Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein. Theor Appl Genet, 2004, 108: 1449-1457



[16]Liu X Q, Xu X, Tan Y P, Li S Q, Hu J, Huang J Y, Yang D C, Li Y S, Zhu Y G. Inheritance and molecular mapping of two fertility-restoring loci for Honglian gametophytic cytoplasmic male sterility in rice (Oryza sativa L.). Mol Gen Genomics, 2004, 271: 586-594



[17]Wang Z H, Zou Y J, Li X Y, Zhang Q Y, Chen L T, Wu H, Su D H, Chen Y L, Guo J X, Luo D, Long Y M, Zhong Y, Liu Y G. Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell, 2006, 18: 676-687



[18]Sheeba N K, Viraktamath B C, Sivaramakrishnan S, Gangashetti M G, Khera P, Sundaram R M. Validation of molecular markers linked to fertility restorer gene(s) for WA-CMS lines of rice. Euphytica, 2009, 167: 217-227



[19]Ngangkham U, Parida S K, De S, Kumar A R, Singh A K, Singh N K, Mohapatra T. Genic markers for wild abortive (WA) cytoplasm based male sterility and its fertility restoration in rice. Mol Breed, 2010, 26: 275-292



[20]Zhang G Q, Zeng R Z, Zhang Z M, Ding X H, Li W T, Liu G M, He F H, Tulukdar A, Huang C F, Xi Z Y, Qin L J, Shi J Q, Zhao F M, Feng M J, Shan Z L, Chen L, Guo X Q, Zhu H T, Lu Y G. The construction of a library of single segment substitution lines in rice (Oryza sativa L.). Rice Genet Newsl, 2004, 21:85-87



[21]He F-H(何风华), Xi Z-Y(席章营), Talukdar A, Zhang G-Q(张桂权). Identification of QTLs for plant height and its components by using single segment substitution lines in rice (Oryza sativa L.). Rice Sci (水稻科学), 2005, 12(3): 151-156 (in Chinese with English abstract)



[22]Xi Z Y, He F H, Zeng R Z, Zhang Z M, Ding X H, Li W T, Zhang G Q. Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome, 2006, 49: 476-484



[23]Liu G-M(刘桂富), Li W-T(李文涛), Zeng R-Z(曾瑞珍), Zhang G-Q(张桂权). Development of single segment substitution lines (SSSLs) of subspecies in rice. Chin J Rice Sci (中国水稻科学), 2003, 17: 201-204 (in Chinese with English abstract)



[24]McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B, Maghiran R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Jellstrom R F, Declerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9: 199-207



[25]Zheng K L, Huang N, Bennett J, Khush G S. PCR based marker-assisted selection in rice breeding. In: IRRI Discussion Paper Series. No. 12. Manila, Philippines: International Rice Research Institute, 1995



[26]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSPL) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597-607



[27]Hospital F. Marker-assisted backcross breeding: a case study in genotype building theory. In: Kang M S ed. Quantitative Genetics, Genomics and Plant Breeding. Wallingford, UK: CABI Publishing, 2002



[28]Zhang G-Q(张桂权), Liu Y-G(卢永根). Genetic studies of the hybird sterility in cultivated rice (Oryza sativa): I. Diallel analysis of the hybird sterility among isogenic F1 sterile lines. Chin J Rice Sci (中国水稻科学), 1989, 3: 97-101 (in Chinese with English abstract)



[29]Gabay-Laughnan S, Laughnan J R. Male sterility and restorer genes in maize. In: Freeling M, Walbot V, eds. The Maize Handbook. New York: Springer, 1994. pp 418-423



[30]Taylor D R, Olson M S, McCauley D E. A quantitative genetic analysis of nuclear-cytoplasmic male sterility in structured populations of Silene vulgaris. Genetics, 2001, 158: 833-841



[31]Van Damme J M M, Hundscheid M P J, Ivanovic S, Koelewijn H P. Multiple CMS-restorer gene polymorphism in gynodioecious Plantago coronopus. Heredity, 2004, 93: 175-181



[32]Fu H W, Xue Q Z. Analysis of restoring genes of three type of cytoplasmic male sterility in rice. Mol Plant Breed, 2004, 2: 336-341



[33]Govinda R K, Virmani S S. Genetics of fertility restoration of ‘WA’ type cytoplasmic male sterility in rice. Crop Sci, 1988, 28: 787-792



[34]Zhuang J-Y(庄杰云), Fan Y-Y(樊叶杨), Wu J-L(吴建利), Rao Z-M(饶志明), Xia Y-W(夏英武), Zheng K-L(郑康乐). Maping genes for rice CMS-WA fertility restoration. Acta Genet Sin (遗传学报), 2001, 28(2): 129-134 (in Chinese with English abstract)



[35]Xu C-G(徐才国), Tang W-J(唐为江), Xing Y-Z(邢永忠). Separate restorability evaluation of two fertility restorer genes in the rice restorer line, Minghui 63. Mol Plant Breed (分子植物育种), 2003, 1(4): 497-501 (in Chinese with English abstract)



[36]Pradhan S B, Jachuck P J. Genetics of fertility restoration of elite lines for different cytoplasmic male sterile sources in rice. Oryza, 1999, 36: 374-376



[37]Tao D Y, Xu P, Li J, Hu F Y, Yang Y Q, Zhou J W, Tan X L, Jones M P. Inheritance and mapping of male sterility restoration gene in upland japonica restorer lines. Euphytica, 2004, 138: 247-254



[39]Singh A K, Mahapatra T, Prabhu K V, Singh V P, Zaman F U, Mishra G P, Nandakumar N, Joseph M, Gopalakrishnan S, Aparajita G, Tyagi N K, Prakash P, Sharma R K, Shab U S, Singh S K. Application of molecular markers in rice breeding: progress at IARI. In: Advances in Marker Assisted Selection Workshop. Trainee’s manual, Handouts and references, 2005

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!