作物学报 ›› 2013, Vol. 39 ›› Issue (04): 744-752.doi: 10.3724/SP.J.1006.2013.00744
谢小玉,张兵,张霞,马仲炼,李加纳*
XIE Xiao-Yu,ZHANG Bing,ZHANG Xia,MA Zhong-Lian,LI Jia-Na*
摘要:
[1]Xiang J(项俊), Chen Z-B(陈兆波), Wang P(王沛), Yu L-J(余龙江), Li M-T(栗茂腾). The effect of CaCl2 treatment on the Chang of drought related physiological and biochemical indices of Brassica napus. J Huazhong Agric Univ (华中农业大学学报), 2007, 26(5): 607–611 (in Chinese with English abstract)[2]Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2004, 101: 17306–17311[3]Selvam J N, Kumaravadivel N, Gopikrishnan A, Kumar B K, Ravikesavan R, Boopathi M N. Identification of a novel drought tolerance gene in Gossypium hirsutum L. cv KC3. Commun Biometry Crop Sci, 2009, 4: 9–13[4]Yan A H, Zhang L F, Zhang Y W, Wang D M. Early stage SSH library construction of wheat near isogenic line TcLr19 under the stress of Puccinia recondita f. sp. tritici. Front Agric China, 2009, 3: 146–151[5]Islam M A, Du H, N J, Ye H Y, Xiong L Z. Characterization of Glossyl homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol Biol, 2009, 70: 443–456[6]Poroyko V, Hejlek L G, Spollen W G, Springer G K, Nguryen H T, Sharp R E, Bohnert H J. The maize root transcriptome by serial analysis of gene expression. Plant Physiol, 2005, 138: 1700–1710[7]Yue G D, Zhang Y L, Li Z X, Sun L, Zhang J R. Differential gene expression analysis of maize leaf at heading stage in response to water-deficit stress. Bioscie Rep, 2008, 28: 125–134 [8]Zhang G Y, Chen M, Li L C, Xu Z, Chen X P, Guo J M, Ma Y Z. Overexpression of the soybean GmERF3 gene, and AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot, 2009, 60: 3781–3796[9]Buchanan C D, Lim S, Salzman R A, Kagiampakis I, Morishige D T, Weers B D, Klein R R, Pratt L H, Cordonnier-Pratt M M, Klein P E Mullet, J E. Sorghum bicolor’s transcriptome response to dehydration high salinity and ABA. Plant Mol Biol, 2005, 58: 699–720[10]Kanneganti V, Gupta A K. Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol, 2008, 66: 445–462[11]Yu Q, Hu Y, Li J, Wu Q, Lin Z. Sense and antisense expression of plasma membrane aquaporin BnPl from Brassica napus in tobacco and its effects on plant drought resistance. Plant Sci, 2005, 169: 647–656[12]Rebrikov D V, Desai S M, Siebert P D, Lukyanov S A. Suppression subtractive hybridization. Methods Mol Biol, 2004, 258: 107–134[13]Li H-Y(李惠勇), Huang S-H(黄素华), Shi Y-S(石云素), Song Y-C(宋燕春), Zhao J-R(赵久然), Wang F-G(王凤格), Wang T-Y(王天宇), Li Y(黎裕). Isolating soil drought-induced genes from maize seedling leaves through suppression subtractive hybridization. Sci Agric Sin (中国农业科学), 2007, 6(6): 647–651 (in Chinese with English abstract)[14]Zhang H(张宏), Song G-Q(宋国琦), Ji W-Q(吉万全), Hu Y-G(胡银岗). Gene induction by drought stress in wheat variety Xiaoyan 22 and their expression analysis. J Agric Biotechnol (农业生物技术学报), 2009, 17(4): 670–676 (in Chinese with English abstract)[15]Clement M, Lambert A, Herouart D, Boncompagni E. Identification of new up-regulated genes under drought stress in soybean nodules. Gene, 2008, 426: 15–22[16]Wang D-L(王德龙), Ye W-W(叶武威), Wang J-J(王俊娟), Song L-Y(宋丽艳), Fan W-L(樊伟丽), Cui Y-P(崔宇鹏). Construction of SSH library and its analyses of cotton drought associated genes under drought stress. Acta Agron Sin (作物学报), 2010, 36(12): 2035−2044 (in Chinese with English abstract)[17]Zhang L(张玲), Li F-G(李付广), Liu C-L(刘传亮), Zhang C-J(张朝军), Wu Z-X(武之霞). Isolation and analysis of drought-related gene from cotton (Gossypium arboreum L.) library. Cotton Sci (棉花学报), 2010, 22(2): 110–114 (in Chinese with English abstract)[18]Liu W-R(刘文荣), Zhang J-S(张积森), Rao J(饶进), Cai Q-H(蔡秋华), Weng X-Y(翁笑艳), Ruan M-H(阮妙鸿), Que Y-X(阙友雄), Chen R-K(陈如凯), Zhang M-Q(张木清). Construction and analysis of suppression subtractive hybridization library for Saccharum arundinaceum Retz. leaves exposed to drought stress. Acta Agron Sin (作物学报), 2007, 33(6): 961–967 (in Chinese with English abstract)[19]Tao S-H(陶士珩). Bioinformatics (生物信息学). Beijing: Science Press, 2007. pp 98–99 (in Chinese)[20]Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G. Gene Ontology: tool for the unification of biology. Nat Genet, 2000, 25: 25–29[21]Nguyen H T, Leipner J, Stamp P, Guerra-Peraza O. Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Plant Physiol Biochem, 2009, 47: 116–122[22]Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot, 2009, 103: 551–560[23]Turchetto-Zolet A C, Margis-Pinheiro M, Margis R. The evolution of pyrroline-5-carboxylate synthase in plants: a key enzyme in proline synthesis. Mol Genet Genom, 2009, 281: 87–97[24]Ahmed N U, Park J I, Seo M S, Kumar T S, Lee I H, Park B S, Nou I S. Identification and expression analysis of chitinase genes related to biotic stress resistance in Brassica. Mol Biol Rep, 2012, 39: 3649–3657[25]Raeini-Sarjanz M, Chalavi V. Effects of water stress and constitutive expression of a drought induced chitinase gene on water-use efficiency and carbon isotope composition of strawberry. J Appl Bot Food Qual, 2011, 84: 90–94 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8和BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180. |
[4] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[5] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[6] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
[7] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[8] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[9] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[10] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[11] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
[12] | 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740. |
[13] | 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805. |
[14] | 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823. |
[15] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
|