欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (04): 744-752.doi: 10.3724/SP.J.1006.2013.00744

• 研究简报 • 上一篇    下一篇

干旱胁迫下油菜消减文库的构建及分析

谢小玉,张兵,张霞,马仲炼,李加纳*   

  • 收稿日期:2012-08-04 修回日期:2012-12-08 出版日期:2013-04-12 网络出版日期:2013-01-28
  • 通讯作者: 李加纳, E-mail: ljn1950@swu.edu.cn
  • 基金资助:

    本研究由中央高校基本科研业务费专项资金(XDJK2009B020)和重庆市自然科学基金项目(CSTC2010BB1012)资助。

Construction and Analysis of SSH Library in Rapeseed (Brassica napus L.) under Drought Stress

XIE Xiao-Yu,ZHANG Bing,ZHANG Xia,MA Zhong-Lian,LI Jia-Na*   

  • Received:2012-08-04 Revised:2012-12-08 Published:2013-04-12 Published online:2013-01-28
  • Contact: 李加纳, E-mail: ljn1950@swu.edu.cn

摘要:

以抗旱能力强的油菜Holiday为材料,以干旱处理的样品为Tester,正常水分管理(对照)Driver构建干旱诱导的甘蓝型油菜叶片正向抑制性消减杂交 (SSH)文库随机挑选24个阳性克隆进行PCR验证,结果表明,其中23个含有插入片段,平均大小在750 bp左右。将96个阳性克隆测序,并拼接和去除冗余,获得重叠群4条,单拷贝序列82,平均长度为542 bp。经BlastX程序比对蛋白数据库发现,11EST没有找到同源性序列,75条有同源序列。KOBAS分析发现,28EST被定位到67条代谢途径中,根据P值推测,光合中的碳固定、有氧呼吸的电子供体、氮代谢、乙醛酸和二羧酸代谢在植物干旱胁迫中发挥着极为重要的作用。这些EST涉及到的功能中所占比例最大的分别是细胞器(58.82%)、结合(30.77%)和新陈代谢过程(43.72%),表明甘蓝型油菜面对干旱胁迫时,细胞器组件上的功能发挥了重要的作用,结合基因和蛋白被激活,加强了新陈代谢。

关键词: 油菜, 抑制差减杂交, 干旱胁迫, cDNA文库, 表达序列标签

Abstract:

The positive SSH library in leaves of rapeseed (Brassica napus L.) Holiday (with high drought resistance ability) was constructed using the sample under drought stress as Tester and the sample under normal water management as Driver. Twenty-four positive clones selected randomly were verified by using PCR. The result of electrophoresis showed that 23 clones contained inserts whose average length was 750 bp. Ninety-six positive clones were sequenced and analyzed by CAP3 Sequence Assembly Program, showing that four contigs and 82 singletons were contained and the average length of 86 ESTs was 542 bp. Blastx alignment with Nr database showed 11 ESTs without significant similarity and 75 ESTs with similarity in GenBank database. KOBAS suggested that 28 ESTs were mapped to 67 pathways. It could be predicted that the carbon fixation in photosynthetic organism, electron donor III of aerobic respiration, nitrogen metabolism, glyoxylate and dicarboxylate metabolism played a key role in drought tolerance ofrapeseed. The analysis of ESTs showed that a large share of function could be attributed to organelle (58.82%), binding (30.77%), and metabolic process (43.72%), which plays important roles in metabolism of rapeseed under drought stress.

Key words: Rapeseed (Brassica napus L.), Suppression subtractive hybridization (SSH), Drought stress, cDNA library, Express sequence tag

[1]Xiang J(项俊), Chen Z-B(陈兆波), Wang P(王沛), Yu L-J(余龙江), Li M-T(栗茂腾). The effect of CaCl2 treatment on the Chang of drought related physiological and biochemical indices of Brassica napus. J Huazhong Agric Univ (华中农业大学学报), 2007, 26(5): 607–611 (in Chinese with English abstract)



[2]Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2004, 101: 17306–17311



[3]Selvam J N, Kumaravadivel N, Gopikrishnan A, Kumar B K, Ravikesavan R, Boopathi M N. Identification of a novel drought tolerance gene in Gossypium hirsutum L. cv KC3. Commun Biometry Crop Sci, 2009, 4: 9–13



[4]Yan A H, Zhang L F, Zhang Y W, Wang D M. Early stage SSH library construction of wheat near isogenic line TcLr19 under the stress of Puccinia recondita f. sp. tritici. Front Agric China, 2009, 3: 146–151



[5]Islam M A, Du H, N J, Ye H Y, Xiong L Z. Characterization of Glossyl homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol Biol, 2009, 70: 443–456



[6]Poroyko V, Hejlek L G, Spollen W G, Springer G K, Nguryen H T, Sharp R E, Bohnert H J. The maize root transcriptome by serial analysis of gene expression. Plant Physiol, 2005, 138: 1700–1710



[7]Yue G D, Zhang Y L, Li Z X, Sun L, Zhang J R. Differential gene expression analysis of maize leaf at heading stage in response to water-deficit stress. Bioscie Rep, 2008, 28: 125–134



[8]Zhang G Y, Chen M, Li L C, Xu Z, Chen X P, Guo J M, Ma Y Z. Overexpression of the soybean GmERF3 gene, and AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot, 2009, 60: 3781–3796



[9]Buchanan C D, Lim S, Salzman R A, Kagiampakis I, Morishige D T, Weers B D, Klein R R, Pratt L H, Cordonnier-Pratt M M, Klein P E Mullet, J E. Sorghum bicolor’s transcriptome response to dehydration high salinity and ABA. Plant Mol Biol, 2005, 58: 699–720



[10]Kanneganti V, Gupta A K. Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol, 2008, 66: 445–462



[11]Yu Q, Hu Y, Li J, Wu Q, Lin Z. Sense and antisense expression of plasma membrane aquaporin BnPl from Brassica napus in tobacco and its effects on plant drought resistance. Plant Sci, 2005, 169: 647–656



[12]Rebrikov D V, Desai S M, Siebert P D, Lukyanov S A. Suppression subtractive hybridization. Methods Mol Biol, 2004, 258: 107–134



[13]Li H-Y(李惠勇), Huang S-H(黄素华), Shi Y-S(石云素), Song Y-C(宋燕春), Zhao J-R(赵久然), Wang F-G(王凤格), Wang T-Y(王天宇), Li Y(黎裕). Isolating soil drought-induced genes from maize seedling leaves through suppression subtractive hybridization. Sci Agric Sin (中国农业科学), 2007, 6(6): 647–651 (in Chinese with English abstract)



[14]Zhang H(张宏), Song G-Q(宋国琦), Ji W-Q(吉万全), Hu Y-G(胡银岗). Gene induction by drought stress in wheat variety Xiaoyan 22 and their expression analysis. J Agric Biotechnol (农业生物技术学报), 2009, 17(4): 670–676 (in Chinese with English abstract)



[15]Clement M, Lambert A, Herouart D, Boncompagni E. Identification of new up-regulated genes under drought stress in soybean nodules. Gene, 2008, 426: 15–22



[16]Wang D-L(王德龙), Ye W-W(叶武威), Wang J-J(王俊娟), Song L-Y(宋丽艳), Fan W-L(樊伟丽), Cui Y-P(崔宇鹏). Construction of SSH library and its analyses of cotton drought associated genes under drought stress. Acta Agron Sin (作物学报), 2010, 36(12): 2035−2044 (in Chinese with English abstract)



[17]Zhang L(张玲), Li F-G(李付广), Liu C-L(刘传亮), Zhang C-J(张朝军), Wu Z-X(武之霞). Isolation and analysis of drought-related gene from cotton (Gossypium arboreum L.) library. Cotton Sci (棉花学报), 2010, 22(2): 110–114 (in Chinese with English abstract)



[18]Liu W-R(刘文荣), Zhang J-S(张积森), Rao J(饶进), Cai Q-H(蔡秋华), Weng X-Y(翁笑艳), Ruan M-H(阮妙鸿), Que Y-X(阙友雄), Chen R-K(陈如凯), Zhang M-Q(张木清). Construction and analysis of suppression subtractive hybridization library for Saccharum arundinaceum Retz. leaves exposed to drought stress. Acta Agron Sin (作物学报), 2007, 33(6): 961–967 (in Chinese with English abstract)



[19]Tao S-H(陶士珩). Bioinformatics (生物信息学). Beijing: Science Press, 2007. pp 98–99 (in Chinese)



[20]Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G. Gene Ontology: tool for the unification of biology. Nat Genet, 2000, 25: 25–29



[21]Nguyen H T, Leipner J, Stamp P, Guerra-Peraza O. Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Plant Physiol Biochem, 2009, 47: 116–122



[22]Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot, 2009, 103: 551–560



[23]Turchetto-Zolet A C, Margis-Pinheiro M, Margis R. The evolution of pyrroline-5-carboxylate synthase in plants: a key enzyme in proline synthesis. Mol Genet Genom, 2009, 281: 87–97



[24]Ahmed N U, Park J I, Seo M S, Kumar T S, Lee I H, Park B S, Nou I S. Identification and expression analysis of chitinase genes related to biotic stress resistance in Brassica. Mol Biol Rep, 2012, 39: 3649–3657



[25]Raeini-Sarjanz M, Chalavi V. Effects of water stress and constitutive expression of a drought induced chitinase gene on water-use efficiency and carbon isotope composition of strawberry. J Appl Bot Food Qual, 2011, 84: 90–94

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[4] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[5] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[6] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[7] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[8] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[9] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[10] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[11] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[12] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[13] 张明聪, 何松榆, 秦彬, 王孟雪, 金喜军, 任春元, 吴耀坤, 张玉先. 外源褪黑素对干旱胁迫下春大豆品种绥农26形态、光合生理及产量的影响[J]. 作物学报, 2021, 47(9): 1791-1805.
[14] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[15] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!