欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (11): 2055-2064.doi: 10.3724/SP.J.1006.2013.02055

• 耕作栽培·生理生化 • 上一篇    下一篇

马铃薯连作地健康株与病株根区土壤微生态特性比较

陈杰1,郭天文2,谭雪莲2,朱渭兵3,魏晓丽1,王东胜1,薛泉宏1,*   

  1. 1西北农林科技大学资源环境学院, 陕西杨凌712100; 2甘肃省农业科学院旱地农业研究所, 甘肃兰州 730070; 3杨凌金薯种业科技有限公司, 陕西杨凌712100
  • 收稿日期:2013-01-14 修回日期:2013-06-09 出版日期:2013-11-12 网络出版日期:2013-08-12
  • 通讯作者: 薛泉宏, E-mail: xuequanhong@163.com, Tel: 13474173220
  • 基金资助:

    本研究由甘肃省农业生物技术研究与应用开发项目(GNSW-2009-20)资助。

Comparison of Microecological Characterization in Rhizosphere Soil between Healthy and Un-healthy Plants in Continuous Cropping Potato Fields

CHEN Jie1,GUO Tian-Wen2,TAN Xue-Lian2,ZHU Wei-Bing3,WEI Xiao-Li1,WANG Dong-Sheng1,XUE Quan-Hong1,*   

  1. 1 College of Resources and the Environment, Northwest A&F University, Yangling 712100, China; 2 Dryland Agriculture Institute Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; 3 Yangling Jinshu Sweet Potato Seed Technology Limited, Yangling 712100, China
  • Received:2013-01-14 Revised:2013-06-09 Published:2013-11-12 Published online:2013-08-12
  • Contact: 薛泉宏, E-mail: xuequanhong@163.com, Tel: 13474173220

摘要:

为探索甘肃省连作马铃薯健康生长的微生态机制,采用常规养分分析法测定了健康株与病株根区土壤中速效氮磷钾含量,稀释平皿涂抹法测定土壤放线菌数量,琼脂块法筛选拮抗放线菌;16S rRNA序列分析法鉴定优势放线菌,发酵液抑菌试验检测优势放线菌灭癌素链霉菌(S. gancidicus)对马铃薯病原真菌的抑菌作用。结果表明,在连作4年的田中:马铃薯病株根区土壤的速效PK含量分别较健株低29.9%12.5%,铵态氮含量较健株高24.1%在高氏1号培养基上,病株根区土壤中放线菌总数、小单孢菌及未鉴定放线菌数量较健株分别减少51.1%83.0%53.9%;腐植酸琼脂培养基上,病株根区土壤中放线菌总数、链霉菌数量较健株分别减少46.0%46.7%在病、健株根区土壤中,对4株靶标真菌的拮抗潜势SAAP值均病株小于健株。健株根区土壤中的优势放线菌为灭癌素链霉菌(S. gancidicus),该菌对4株马铃薯常见土传病原真菌立枯丝核菌(R. solani)、茄病镰刀菌(F. solani)、硫色镰刀菌(F. sulphureum)大丽轮枝菌(V. dahliae)均有抑制作用;病株根区土壤中的优势放线菌为加利利链霉菌(S. galilaeus),该菌为马铃薯疮痂病致病菌。由此可知,保持连作马铃薯健康生长的根区土壤微生态特征是,高量磷钾及低量氮的速效养分组合,较多放线菌且拮抗放线菌的拮抗潜势较大,优势放线菌为有益菌。

关键词: 马铃薯, 连作, 土壤养分, 放线菌, 微生态机制

Abstract:

To explore the microecological mechanism of healthy plant growth in continuous potato fields in Gansu Province, China, we measured contents of available soil nitrogen (NH4+-N), phosphorus (P), and potassium (K) using conventional soil nutrient analytic methods, abundance of soil actinomycetes using serial dilution and plating techniques, and screened antagonistic actinomycetes from obtained actinomycete isolates using the agar block method. The selected dominant actinomycetes were identified by 16S rRNA sequence analysis, and the inhibitory effect of one dominant actinomycete, Streptomyces gancidicus, was tested using culture filtrate. Results showed that in the four-year continuous potato field, available soil P and K contents in the rhizosphere of diseased plants were respectively 29.9% and 12.5% lower than those of healthy plants, whereas soilNH4+-N content in the rhizosphere of diseased plant was 24.1% higher than that of healthy plant. Compared with those fromthe rhizosphere of healthy plants, the number of soil actinomycetes, Micromonospora, and unidentified actinomycetes from the rhizosphere of diseased plants cultured with the Gause1 medium decreased by 51.1%, 83.0%, and 53.9%, respectively, whereas the number of soil actinomycetes and Streptomyces from the rhizosphere of diseased plants cultured with the Humic Acid medium decreased by 46.0% and 46.7%, respectively. The soil actinomycetes antagonistic potentiality (SAAP) of actinomycetes with antagonistic effects on thefour pathogenic fungi of potato were lower in the rhizosphere of diseased plants than in the rhizosphere of healthy plants. S. gancidicus and S. galilaeus were found dominant in the rhizosphere of healthy and diseased plants, respectively. In conclusion, the microecology of rhizosphere soil that supports healthy plant growth in the continuous potato field is mainly characterized by: available nutrient combination of abundant P and K with relatively poor N contents; and a larger number of soil actinomycetes than that of diseased plants, with the numerically dominant actinomycetes showing beneficial antagonistic effect on several common soil-borne pathogenic fungi.

Key words: Potato, Continuous cropping, Soil nutrient, Actinomycetes, Microecological mechanism

[1]Zhang J-D(张久东), Bao X-G(包兴国), Yang W-Y(杨文玉), Hu Z-Q(胡志桥), Wang T(王婷), Li Q-F(李全福). High-efficiency cultivation technique of potato by intercropping green manure plants. Gansu Agric Sci Technol (甘肃农业科技), 2011, 12: 52–53 (in Chinese)



[2]Yu B(余斌), Shen B-Y(沈宝云), Wang W(王文), Qiu H-Z(邱慧珍), Liu X(刘鑫), Li Z-Z(李朝周), Zhang J-L(张俊莲), Wang D(王蒂). Effects of different potato varieties on preventing continuous cropping obstacle in the arid regions. J Gansu Agric Univ (甘肃农业大学学报), 2012, 47(4): 49–53 (in Chinese with English abstract) 



[3]Robert P L, Timothy S G. Control of soilborne potato diseases using Brassica green manures. Crop Protection, 2007, 26: 1067–1077



[4]Bai S(白霜), Xue Q-H(薛泉宏), Zhao Y-C(赵邑尘), Cao S-M(曹书苗), Tong Y-A(同延安), Wang X-H(王晓辉), Xu W-L(徐万里). Study on actinomycetic ecology between healthy and diseased plants & rhizosphere with different salt contents in Xinjiang. J Northwest A&F Univ (Nat Sci Edn)(西北农林科技大学学报?自然科学版), 2009, 37(7): 183–190 (in Chinese with English abstract)



[5]Duan C-M(段春梅), Xue Q-H(薛泉宏), Hu S-B(呼世斌), Zhao J(赵娟), Wei Y(魏样), Wang L-N(王玲娜), Shen G-H(申光辉), Chen Q(陈秦). Microbial ecology of fusarium wilt infected and healthy cucumber plant in root zone of continuous cropping soil. J Northwest A& F Univ (Nat Sci Edn)(西北农林科技大学学报?自然科学版), 2010, 38(4): 143–150 (in Chinese with English abstract)



[6]Shen G-H(申光辉), Xue Q-H(薛泉宏), Zhang J(张晶), Duan J-L(段佳丽), Wang D-S(王东胜), Yang X-H(杨兴华). Screening, identification and biocontrol potential of antagonistic fungi against strawberry root rot and plant growth promotion. Sci Agric Sin (中国农业科学), 2012, 45(22): 4612–4626 (in Chinese with English abstract)



[7]Cheng L-J(程丽娟), Xue Q-H(薛泉宏). Experimental Techniques of Microbiology (微生物实验技术). Xi’an: World Publishing Corporation, 2000. pp 80–84, 383–384 (in Chinese)



[8]Xu L-H(徐丽华), Jiang C-L(姜成林). Studies of Microbial Resources (微生物资源学). Beijing: Science Press, 1997 (in Chinese)



[9]Sun J-Z(孙敬祖), Xue Q-H(薛泉宏), Tang M(唐明), Cao S-M(曹书苗), Xing S-L(邢胜利). Study on the effect of actinomycetes on microflora of replanted strawberry’s root domain and the bio-control effectiveness. J Northwest A& F Univ (Nat Sci Edn)(西北农林科技大学学报?自然科学版), 2009, 37(12): 153–158(in Chinese with English abstract)



[10]Bao S-D(鲍士旦). Soil and agricultural chemistry analysis(土壤农化分析). Beijing, China Agriculture Press, 2000. pp 30–34, 53–56, 81–83, 106–108, 165 (in Chinese)



[11]Zhu W-J(朱文杰), Xue Q-H(薛泉宏), Cao Y-R(曹艳茹), Xue L(薛磊), Shen G-H(申光辉), Lai H-X(来航线). Distribution and characteristics of soil antagonistic actinomycetes on northern slope of Taibai Mountain, Qinling. Chin J Appl Ecol (应用生态学报), 2011, 22(11): 3003–3010 (in Chinese with English abstract)



[12]Xu L-H(徐丽华), Li W-J(李文均), Liu Z-H(刘志恒). Actinomycetes Systematics: Principle, Method and Practice (放线菌系统学:原理方法及实践). Beijing, Science Press, 2007. pp 40–45 (in Chinese)



[13]Zhao J(赵娟), Xue Q-H(薛泉宏), Wang L-N(王玲娜), Duan C-M(段春梅), Xue L(薛磊), Mao N(毛宁). Antagonistic effect of multifunctional actinomycete strain Act12 on soil-borne pathogenic fungi and its identification. Chin J Eco-Agric (中国生态农业学报), 2011, 19(2): 394–398 (in Chinese with English abstract)



[14]Hu Y(胡宇), Guo T-W(郭天文), Zhang X-C(张绪成). Effect of potato continuous cropping on soil nutrients in dry land. J Anhui Agric Sci (安徽农业科学), 2009, 37(12): 5436–5439, 5610 (in Chinese with English abstract)



[15]Sun Q(孙权), Chen R(陈茹), Song N-P(宋乃平), Wang Q-F(王青凤), Wang R(王锐). Change trends of soil nutrients, enzyme activities, and microbial composition in continuous potato cropping system in semi-arid and cool hilly area of Ningxia. J Soil Water Conserv (水土保持学报), 2010, 24(6): 208–212 (in Chinese with English abstract)



[16]Zhang H-Y(张鸿雁), Xue Q-H(薛泉宏), Tang M(唐明), Wang L-N(王玲娜), Duan C-M(段春梅). Study on actinomycetic ecology in soil with the different cultivating years of ginseng. J Northwest A&F Univ (Nat Sci Edn)(西北农林科技大学学报?自然科学版), 2010, 38(8): 151–159 (in Chinese with English abstract)



[17]Zhang M(张萌), Zhao W-Q(赵伟全), Yu X-M(于秀梅), Yang W-X(杨文香), Zhang T(张汀), Liu D-Q(刘大群). Genetic diversity of potato scab pathogens in China based on 16S rDNA sequences. Sci Agric Sin (中国农业科学), 2009, 42(2): 499–504 (in Chinese with English abstract)

[1] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[2] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[3] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[4] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[5] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[6] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[7] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[8] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[9] 王亚梁, 朱德峰, 张玉屏, 陈若霞, 向镜, 陈惠哲, 谌江华, 汪峰. 连作杂交晚稻精准条播长秧龄机插的生长及产量特性分析[J]. 作物学报, 2022, 48(1): 215-225.
[10] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[11] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[12] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[13] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[14] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[15] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!