欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (04): 571-580.doi: 10.3724/SP.J.1006.2014.00571

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

水稻几丁质酶基因的转录与表达特征

范伟**,李雪姣**,关明俐,缪刘杨,史佳楠,窦世娟,刘丽娟,李莉云,刘国振*   

  1. 河北农业大学生命科学学院,河北保定071000
  • 收稿日期:2013-08-08 修回日期:2014-01-12 出版日期:2014-04-12 网络出版日期:2014-02-14
  • 通讯作者: 刘国振, E-mail: gzhliu@genomics.org.cn, Tel: 0312-7528250
  • 基金资助:

    本研究由国家自然科学基金项目(31171528)资助。

Transcriptional and Translational Characterization of Rice Chitinase Genes

FAN Wei**,LI Xue-Jiao**,GUAN Ming-Li,MIAO Liu-Yang,SHI Jia-Nan,DOU Shi-Juan,LIU Li-Juan,LI Li-Yun,LIU Guo-Zhen*   

  1. College of Life Sciences, Agricultural University of Hebei, Baoding 071000, China
  • Received:2013-08-08 Revised:2014-01-12 Published:2014-04-12 Published online:2014-02-14
  • Contact: 刘国振, E-mail: gzhliu@genomics.org.cn, Tel: 0312-7528250

摘要:

几丁质酶与植物的生长发育、抗逆和防御反应相关。水稻PR3家族几丁质酶编码基因有19个成员,本文分析其转录特征,了解到有些基因属于组成型转录,有些基因属于组织特异型转录,分析了几丁质酶蛋白质的结构域,并对其进行了聚类和亚家族分类分析。利用免疫印迹技术分析了几丁质酶蛋白质的表达谱,发现CHIT5的表达量在水稻叶片生长过程中下调,而CHIT6CHIT14CHITC1CHITC2的表达量上调。在水稻与白叶枯病菌(Xoo)的不亲和反应中,CHIT1CHIT2CHIT5CHIT6CHIT10CHIT15CHIT16的表达量上调,CHIT14CHITC1CHITC2的表达下调。进一步比较几丁质酶蛋白质在水稻-Xoo不同互作反应中的表达,发现其在亲和及不亲和反应中的表达模式类似,但一般在亲和反应中强度变化较大。此外,CHIT6蛋白质在对照反应中的表达量上调,提示CHIT6的表达受创伤的诱导。本文比较系统地揭示了水稻PR3家族几丁质酶编码基因的转录和蛋白质表达特征,为其功能解析提供了线索。

关键词: 水稻, 几丁质酶, 聚类分析, 白叶枯病菌, 转录, 免疫印迹

Abstract:

Plant chitinases play roles in plant development and stress responses. Nineteen chitinase genes, belonging to pathogenesis related (PR) 3 family, were found in rice genome. In this study, constitutive and tissue-specific transcripted chitinase genes were identified, and the domain architecture of chitinase protein was predicted. Clustering analysis and subfamily classification were also carried out. Furthermore, chitinase protein expression profiling was surveyed using western blot (WB), it was found that the expression of CHIT5 was down-regulated in normal growth rice leaves, while the expressions of CHIT6, CHIT14, CHITC1, and CHITC2 were up-regulated. In the incompatible interaction between rice and Xanthomonas oryzae pv. oryzae (Xoo), the expressions of CHIT1, CHIT2, CHIT5, CHIT6, CHIT10, CHIT15, and CHIT16 were enhanced after inoculation and three of CHIT14, CHITC1 and CHITC2 down-regulated. In addition, the comparison of chitinase protein expression in different rice-Xoo interactions showed that these were similar alternation patterns between compatible and incompatible reactions, with a higher extent of alterations in incompatible interactions for most of chitinases. It is interesting to note that the expression of CHIT6 was enhanced in mock-treated samples, suggesting that the expression of CHIT6 may be induced by a mechanic wound. The data revealed in this research will provide useful clues for the understanding of the function of PR3 family chitinase genes.

Key words: Rice, Chitinase, Clustering analysis, Xanthomonas oryzae pv. oryzae (Xoo), Transcription, Western blot

[1]Boller T. Chemoperception of microbial signals in plant cells. Annu Rev Plant Biol, 1995, 46: 189–214

[2]Liu T, Liu Z, Song C, Hu Y, Han Z, She J, Fan F, Wang J, Jin C, Chang J, Zhou J M, Chai J. Chitin-induced dimerization activates a plant immune receptor. Science, 2012, 336: 1160–1164

[3]Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA, 2006, 103: 11086–11091

[4]Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J, 2010, 64: 204–214

[5]Kishimoto K, Kouzai Y, Kaku H, Shibuya N, Minami E, Nishizawa Y. Perception of the chitin oligosaccharides contributes to disease resistance to blast fungus Magnaporthe oryzae in rice. Plant J, 2010, 64: 343–354

[6]Kouzai Y, Kaku H, Shibuya N, Minami E, Nishizawa Y. Expression of the chimeric receptor between the chitin elicitor receptor CEBiP and the receptor-like protein kinase Pi-d2 leads to enhanced responses to the chitin elicitor and disease resistance against Magnaporthe oryzae in rice. Plant Mol Biol, 2013, 81: 287–295

[7]Kumar S, Sharma R, Tewari R. Production of N-acetylglucosamine using recombinant chitinolytic enzymes. Indian J Microbiol, 2011, 51: 319–325

[8]Kitajima S, Sato F. Plant pathogenesis-related proteins: molecular mechanisms of gene expression and protein function. J Biochem, 1999, 125: 1–8

[9]Nakazaki T, Tsukiyama T, Okumoto Y, Kageyama D, Naito K, Inouye K, Tanisaka T. Distribution, structure, organ-specific expression, and phylogenic analysis of the pathogenesis-related protein-3 chitinase gene family in rice (Oryza sativa L.). Genome, 2006, 49: 619–630

[10]de A G L B, Sachetto-Martins G, Contarini M G, Sandroni M, de P F R, de Lima V M, Cordeiro M C, de Oliveira D E, Margis-Pinheiro M. Arabidopsis thaliana class IV chitinase is early induced during the interaction with Xanthomonas campestris. FEBS Lett, 1997, 419: 69–75

[11]Samac D A, Shah D M. Developmental and pathogen-induced activation of the Arabidopsis acidic chitinase promoter. Plant Cell, 1991, 3: 1063–1072

[12]Nielsen K K, Bojsen K, Roepstorff P, Mikkelsen J D. A hydroxyproline-containing class IV chitinase of sugar beet is glycosylated with xylose. Plant Mol Biol, 1994, 25: 241–257

[13]Park C H, Kim S, Park J Y, Ahn I P, Jwa N S, Im K H, Lee Y H. Molecular characterization of a pathogenesis-related protein 8 gene encoding a class III chitinase in rice. Mol Cells, 2004, 17: 144–150

[14]Neale A D, Wahleithner J A, Lund M, Bonnett H T, Kelly A, Meeks-Wagner D R, Peacock W J, Dennis E S. Chitinase, beta-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell, 1990, 2: 673–684

[15]Robinson S P, Jacobs A K, Dry I B. A class IV chitinase is highly expressed in grape berries during ripening. Plant Physiol, 1997, 114: 771–778

[16]Passarinho P A, Van Hengel A J, Fransz P F, de Vries S C. Expression pattern of the Arabidopsis thaliana AtEP3/AtchitIV endochitinase gene. Planta, 2001, 212: 556–567

[17]Zhong R, Kays S J, Schroeder B P, Ye Z H. Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene. Plant Cell, 2002, 14: 165–179

[18]Wu B, Zhang B, Dai Y, Zhang L, Shang-Guan K, Peng Y, Zhou Y, Zhu Z. Brittle culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice. Plant Physiol, 2012, 159: 1440–1452

[19]Datta K, Tu J, Oliva N, Ona I I, Velazhahan R, Mew T W, Muthukrishnan S, Datta S K. Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci, 2001, 160: 405–414

[20]Nishizawa Y, Nishio Z, Nakazono K, Soma M, Nakajima E, Ugaki M, Hibi T. Enhanced resistance to blast (Magnaporthe grisea) in transgenic Japonica rice by constitutive expression of rice chitinase. Theor Appl Genet, 1999, 99: 383–390

[21]Snelling J. Role of Oryza sativa Chitinases in Disease Resistance. MS Thesis of Colorado State University, 2005

[22]Kovacs G, Sagi L, Jacon G, Arinaitwe G, Busogoro J P, Thiry E, Strosse H, Swennen R, Remy S. Expression of a rice chitinase gene in transgenic banana (‘Gros Michel’, AAA genome group) confers resistance to black leaf streak disease. Transgenic Res, 2013, 22: 117–130

[23]Huang X, Wang J, Du Z, Zhang C, Li L, Xu Z. Enhanced resistance to stripe rust disease in transgenic wheat expressing the rice chitinase gene RC24. Transgenic Res, 2013, 22: 939–947

[24]Bai H, Lan J P, Gan Q, Wang X Y, Hou M M, Cao Y H, Li L Y, Liu L J, Hao Y J, Yin C C, Wu L, Zhu L H, Liu G Z. Identification and expression analysis of components involved in rice Xa21-mediated disease resistance signalling. Plant Biol (Stuttg), 2012, 14: 914–922

[25]Wang Y, Pi L, Chen X, Chakrabarty P K, Jiang J, De Leon A L, Liu G-Z, Li L, Benny U, Oard J. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell Online, 2006, 18: 3635–3646

[26]Park C J, Peng Y, Chen X, Dardick C, Ruan D, Bart R, Canlas P E, Ronald P C. Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. PLoS Biol, 2008, 6(9): e231

[27]Chen X, Chern M, Canlas P E, Ruan D, Jiang C, Ronald P C. An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity. Sci Signal, 2010, 107: 8029

[28]Park C J, Bart R, Chern M, Canlas P E, Bai W, Ronald P C. Overexpression of the endoplasmic reticulum chaperone BiP3 regulates XA21-mediated innate immunity in rice. PLoS ONE, 2010, 5(2): e9262

[29]Wu Q, Hou M, Li L, Liu L, Hou Y, Liu G. Induction of pathogenesis-related proteins in rice bacterial blight resistant gene XA21-mediated interactions with Xanthomonas oryzae pv. oryzae. J Plant Pathol, 2011, 93: 455–459

[30]Hou M, Xu W, Bai H, Liu Y, Li L, Liu L, Liu B, Liu G. Characteristic expression of rice pathogenesis-related proteins in rice leaves during interactions with Xanthomonas oryzae pv. oryzae. Plant Cell Rep, 2012, 31: 895–904

[31]缪刘杨, 李莉云, 刘钊, 刘雨萌, 江光怀, 杨凤环, 何晨阳, 刘国振. 五个WRKY转录因子在水稻叶片生长和抗病反应中的表达研究. 生物化学与生物物理进展, 2013, 40: 356–364

Miao L Y, Li L Y, Liu Z, Liu Y M, Jiang G H, Yang F H, He C Y, Liu G Z, Jiang G H. Characteristic expression analysis of five WRKY transcriptional factors in rice leaf growth and disease resistance reaction. Prog Biochem Biophys, 2013, 40: 356–364 (in Chinese with English abstract)

[32]史佳楠, 李莉云, 徐文静, 关明俐, 李雪姣, 牛东东, 兰金苹, 窦世娟, 刘丽娟, 刘国振. 八个WRKY转录因子在水稻叶片生长和抗病过程中的表达研究. 植物病理学报, 2014(已接受)

Shi J N, Li L Y, Xu W J, Guan M L, Li X J, Niu D D, Lan J P, Dou S J, Liu L J, Liu G Z. Expression analysis of eight WRKY transcription factors in rice leaf growth and disease resistance response. Acta Phytopathol Sin, 2014 (accepted) (in Chinese with English abstract)

[33]窦世娟, 关明俐, 李莉云, 刘国振. 水稻的病程相关基因. 科学通报, 2013, DOI:10.1360/972012-1831

Dou S J, Guan M L, Li L Y, Liu G Z. The pathogenesis-related genes of rice. Chin Sci Bull, 2013, DOI:10.1360/972012-1831 (in Chinese with English abstract)

[34]Li X, Bai H, Wang X, Li L, Cao Y, Wei J, Liu Y, Liu L, Gong X, Wu L. Identification and validation of rice reference proteins for western blotting. J Exp Bot, 2011, 62: 4763–4772

[35]刘国振, 刘斯奇, 吴琳, 徐宁志. 基于抗体的水稻蛋白质组学: 开端与展望. 中国科学: 生命科学, 2011, 41: 173–177

Liu G Z, Liu S Q, Wu L, Xu N Z. Antibody-based rice proteomics: the beginning and perspectives. Sci Sin Vitae, 2011, 41: 173–177 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRKSLGSP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!