欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (06): 1056-1065.doi: 10.3724/SP.J.1006.2014.01056

• 耕作栽培·生理生化 • 上一篇    下一篇

结实期干湿交替灌溉对2个超级稻品种结实率和粒重的影响

付景1,2,刘洁1,曹转勤1,王志琴1,张耗1,杨建昌1,*   

  1. 1扬州大学江苏省作物遗传生理重点实验室, 江苏扬州225009; 2河南省农业科学院粮食作物研究所, 河南郑州450002
  • 收稿日期:2013-12-03 修回日期:2014-03-04 出版日期:2014-06-12 网络出版日期:2014-04-09
  • 通讯作者: 杨建昌, E-mail: jcyang@yzu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31271641, 31071360), 国家公益性行业(农业)科研专项(201103003, 201203079, 201203031), 国家“十二五”科技支撑计划项目(2011BAD16B14, 2012BAD04B08, 2013BAD07B09)和江苏高校优势学科建设工程专项资助。

Effects of Alternate Wetting and Drying Irrigation during Grain Filling on the Seed-Setting Rate and Grain Weight of Two Super Rice Cultivars

FU Jing1,2,LIU Jie1,CAO Zhuan-Qin1,WANG Zhi-Qin1,ZHANG Hao1,YANG Jian-Chang1,*   

  1. 1 Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; 2 Cereal Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
  • Received:2013-12-03 Revised:2014-03-04 Published:2014-06-12 Published online:2014-04-09
  • Contact: 杨建昌, E-mail: jcyang@yzu.edu.cn

摘要:

大田种植超级稻品种两优培九(两系杂交籼稻)和淮稻9号(粳稻)。自抽穗至成熟设置轻干-湿交替灌溉(WMD)、重干-湿交替灌溉(WSD)和常规灌溉(CI, 保持水层) 3种灌溉方式, 观察其对超级稻灌浆的影响。结果表明, 与CI相比, WMD处理显著增加2个超级稻品种的产量、结实率和粒重, 而WSD处理则降低结实率和粒重。WMD处理显著提高灌浆期剑叶净光合速率、膜质过氧化酶活性和根系氧化力、根系吸收表面积、根系活跃吸收表面积、比表面积和根系中玉米素+玉米素核苷(Z+ZR)及吲哚-3-乙酸(IAA)含量及根冠比, WSD处理的结果则相反。说明结实期轻干-湿交替灌溉可以改善超级稻根系和地上部植株的生理功能, 进而提高结实率和粒重。

关键词: 超级稻, 产量, 根系活力, 光合速率, 干-湿交替灌溉

Abstract:

Two super rice cultivars, Liangyoupeijiu and Huaidao 9, were used in the study. Three irrigation regimes, including alternate wetting and moderate soil drying (WMD), alternate wetting and severe soil drying (WSD), and conventional irrigation (CI, continuous flooding), were imposed from heading to maturity. Compared with CI, WMD significantly increased, whereas WSD decreased, seed setting rate and grain weight of super rice. The photosynthetic rate, activities of membrane lipid peroxidation enzymes in the flag leaf, root oxidation activity, root absorption surface area, root active absorption area, root specific surface area, contents of zeatin + zeatin riboside (Z+ZR) and indole-3-acetic acid (IAA) in roots and the ratio of root to shoot were increased under the WMD regime, but decreased under the WSD regime. The results suggest that the WMD irrigation during grain filling could improve root and shoot physiological functions, and consequently increase the seed-setting rate and grain weight of super rice.

Key words: Super rice, Grain yield, Root activity, Photosynthetic rate, Alternate wetting and drying irrigation

[1]Bouman B A M, Tuong T P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric Water Manag, 2001, 49: 11–30



[2]Bouman B A M. A conceptual framework for the improvement of crop water productivity at different spatial scales. Agric Syst, 2007, 93: 43–60



[3]Lu X, Wu L, Pang L, Li Y, Wu J, Shi C, Zhang F. Effects of plastic film mulching cultivation under non-flooded condition on rice quality. J Sci Food Agric, 2007, 87: 334–339



[4]Tuong T P, Bouman B A M, Mortimer M. More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Prod Sci, 2005, 8: 231–241



[5]Yang J, Liu K, Wang Z, Du Y, Zhang J. Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential. J Integr Plant Biol, 2007, 49: 1445–1454



[6]Zhang H, Zhang S, Zhang J, Yang J, Wang Z. Postanthesis moderate wetting drying improves both quality and quantity of rice yield. Agron J, 2008, 100: 726–734



[7]Zhang H, Xue Y, Wang Z, Yang J, Zhang J. An Alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci, 2009, 49: 2246–2260



[8]Belder P, Bouman B A M, Cabangon R, Guoan L, Quilang E J P, Li Y, Spiertz J H J, Tuong T P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric Water Manag, 2004, 65: 193–210



[9]Belder P, Spiertz J H J, Bouman B A M, Lu G, Tuong T P. Nitrogen economy and water productivity of lowland rice under water-saving irrigation. Field Crops Res, 2005, 93: 169-185



[10]Tabbal D F, Bouman B A M, Bhuiyan S I, Sibayan E B, Sattar M A. On-farm strategies for reducing water input in irrigated rice: case studies in the Philippines. Agric Water Manag, 2002, 56: 93–112



[11]Kato T, Takeda K. Associations among characters related to yield sink capacity in space-planted rice. Crop Sci, 1996, 36: 1135–1139



[12]Kato T, Shinmura D, Taniguchi A. Activities of enzymes for sucrose-starch conversion in developing endosperm of rice and their association with grain filling in extra-heavy panicle types. Plant Prod Sci, 2007, 10: 442–450



[13]Peng S, Cassman K G, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical since the release of IR8 and its challenge of increasing rice yield potential. Crop Sci, 1999, 39: 1552–1559



[14]Cheng S, Zhuang J, Fan Y, Du J, Cao L. Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot, 2007, 100: 959–966



[15]Peng S, Khush G S, Virk P, Tang Q, Zou Y. Progress in ideotype breeding to increase rice yield potential. Field Crops Res, 2008, 108: 32–38



[16]Yang J, Zhang J. Grain filling problem in “super” rice. J Exp Bot, 2010, 61: 1–5



[17]Yang C, Yang L, Yang Y, Zhu O. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric Water Manag, 2004, 70: 67–81



[18]Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M. Root-shoot interaction as a limiting factor of biomass productivity in new tropical rice lines. Soil Sci Plant Nutr, 2004, 50: 545–554



[19]Mishra H S, Rathore T R, Pant R C. Effect of intermittent irrigation on groundwater table contribution, irrigation requirement and yield of rice in mollisols of Tarai region. Agric Water Manag, 1990, 18: 231–241



[20]赵世杰, 许长成, 邹琦, 孟庆伟. 植物组织中丙二醛测定方法的改进. 植物生理学通讯, 1994, 30(3): 207–210



Zhao S J, Xu C C, Zou Q, Meng Q W. Improvements of method for measurement of malondialdehyde in plant tissues. Plant Physiol Commun, 1994, 30(3): 207–210 (in Chinese)



[21]张宪政. 作物生理研究法. 北京: 农业出版社, 1992. pp 140–142, 197–198



Zhang X Z. Research Methods on Crop Physiology. Beijing: Agriculture Press, 1992. pp 140–142, 197–198 (in Chinese)



[22]Berry J A, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol, 1980, 31: 491–543



[23]郝建军, 刘延吉. 植物生理学试验技术. 沈阳: 辽宁科技出版社, 2001. pp 178–190



Hao J J, Liu Y J. Experiment Technology of Plant Physiology. Shenyang: Liaoning Science and Technology Press, 2001. pp 178–190 (in Chinese)



[24]赵世杰, 史国安, 董新纯. 植物生理学实验指导. 北京: 中国农业科技出版社, 2002. pp 48–138



Zhao S J, Shi G A, Dong X C. Laboratory Guide for Plant Physiology. Beijing: China Agricultural Science and Technology Press, 2002. pp 48–138 (in Chinese)



[25]陈远平, 杨文钰. 卵叶韭休眠芽中GA3、IAA、ABA和ZT的高效液相色谱法测定. 四川农业大学学报, 2005, 23: 498–500



Chen Y P, Yang W Y. Determination of GA3, IAA, ABA and ZT in Dormant Buds of Allium ovalifolium by HPLC. J Sichuan Agric Univ, 2005, 23: 498–500 (in Chinese with English abstract)



[26]赵全志, 乔江方, 刘辉, 田志强. 水稻根系与叶片光合特性的关系. 中国农业科学, 2007, 40: 1064–1068



Zhao Q Z, Qiao J F, Liu H, Tian Z Q. Relationship between root and leaf photosynthetic characteristic in rice. Sci Agric Sin, 2007, 40: 1064–1068 (in Chinese with English abstract)



[27]任万军, 杨文钰, 伍菊仙, 樊高琼, 杨振华. 水稻栽后植株氮素积累特征及其与根系生长的关系. 植物营养与肥料学报, 2007, 13: 765–771



Ren W J, Yang W Y, Wu J X, Fan G Q, Yang Z H. Characteristics of nitrogen accumulation and its relationship with root growth of rice after transplanting. Plant Nutr Fert Sci, 2007, 13: 765–771 (in Chinese with English abstract)



[28]刘桃菊, 戚昌瀚, 唐建军. 水稻根系建成与产量及其构成关系的研究. 中国农业科学, 2002, 35: 1416–1419



Liu T J, Qi C H, Tang J J. Studies on relationship between the character parameters of root and yield formation in rice. Sci Agric Sin, 2002, 35: 1416–1419 (in Chinese with English abstract)



[29]Terashima K. Eco-physiological study of root lodging tolerance in direct-seeded rice cultivars. Jpn J Crop Sci, 1997, 31: 155–162



[30]徐富贤, 郑家奎, 朱永川, 丁国祥, 王贵雄. 杂交中稻发根力与抽穗开花期抗旱性关系的研究. 作物学报, 2003, 29: 188–193



Xu F X, Zheng J K, Zhu Y C, Ding G X, Wang G X. Relationship between rooting ability and drought resistance at full-heading in mid-season hybrids rice. Acta Agron Sin, 2003, 29: 188–193 (in Chinese with English abstract)



[31]Stoop W A, Uphoff N, Kassam A. A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar: opportunities for improving farming system for resource-poor farmers. Agric Syst, 2002, 71: 249–274



[32]Kende H, Zeevaart J A D. The five “classical” plant hormones. Plant Cell, 1997, 9: 1197–1210



[33]Davies P J. Introduction. In: Davies P J, ed. Plant Hormones, Biosynthesis, Signal Transduction, Action! The Netherlands: Kluwer Academic Publishers, 2004. pp 1–35



[34]杨建昌, 仇明, 王志琴, 刘立军, 朱庆森. 水稻发育胚乳中细胞增殖与细胞分裂素含量的关系. 作物学报, 2004, 30: 11–17



Yang J C, Qiu M, Wang Z Q, Liu L J, Zhu Q S. Relationship between the cell proliferation and cytokinin content in rice endosperm during its development. Acta Agron Sin, 2004, 30: 11–17 (in Chinese with English abstract)

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!