欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (06): 951-964.doi: 10.3724/SP.J.1006.2014.00951

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

中国大豆育成品种10个重要家族的遗传相似性和特异性

熊冬金1,2,**,王吴彬1,**,赵团结1,盖钧镒1,*   

  1. 1南京农业大学大豆研究所 / 国家大豆改良中心 / 农业部大豆生物学与遗传育种重点实验室(综合) / 作物遗传与种质创新国家重点实验室,江苏南京 210095; 2南昌大学生命科学与食品工程学院,江西南昌330031
  • 收稿日期:2013-11-03 修回日期:2014-03-04 出版日期:2014-06-12 网络出版日期:2014-04-09
  • 通讯作者: 盖钧镒, E-mail: sri@njau.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB1093),国家公益性行业(农业)科研专项经费项目(200803060, 201203026-4),国家自然科学基金项目(30871550,31260332),长江学者和创新团队发展计划资助(PCSIRT13073),教育部高等学校创新引智计划项目(B08025),江苏省优势学科建设工程专项和国家重点实验室自主课题资助。

Genetic Similarity and Specificity of Ten Important Soybean Cultivar Families Released in China

XIONG Dong-Jin1,2,**,WANG Wu-Bin1,**,ZHAO Tuan-Jie1,GAI Jun-Yi1,*   

  1. 1 Soybean Research Institute of Nanjing Agricultural University / National Center for Soybean Improvement / National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095, China; 2 School of Life Science and food Engineering, Nanchang University, Nanchang 330031, China
  • Received:2013-11-03 Revised:2014-03-04 Published:2014-06-12 Published online:2014-04-09
  • Contact: 盖钧镒, E-mail: sri@njau.edu.cn

摘要:

以我国10个大豆育成品种重要家族的179个品种为材料,选用161个均匀分布于大豆基因组的SSR分子标记,采用PowerMarker Ver. 3.25软件分析参试材料的遗传多样性、相似性与特异性。结果表明,161个位点上共检测到1697个等位变异,单位点变幅为5~24个,平均10.5个;多态信息含量在0.549~0.947间,平均0.832;群体具有丰富的遗传变异。聚类分析表明,179个品种可归为6大类11小类,同一家族的品种有聚为一类的趋势。品种间亲本系数和遗传相似系数显著相关(r = 0.67);山东寿张县无名地方品种(A295)、即墨油豆(A133)、滑县大绿豆(A122)和铜山天鹅蛋(A231) 4个家族亲本系数和相似系数均较小,遗传基础较宽广;矮脚早(A291)、上海六月白(A201)、奉贤穗稻黄(A084)和51-83 (A002) 4个家族亲本系数和相似系数较大,遗传基础较狭窄,这与选择育种品种较多有关;东北白眉(A019)家族与其他家族间的亲本系数和遗传相似系数均最小。家族间特异性分析表明,东北白眉(A019)家族和其他9个家族地理距离较远,存在较多互补、特有、特缺等位变异;而III区和II区地理位置较近,种质交流较多,两区家族间特有、特缺等位点数较少,其中A002、A231和A122三个家族无特有等位变异,A084、A201、A034和A231四个家族无特缺等位变异。本研究结果对拓宽大豆育成品种遗传基础具有指导意义。

关键词: 大豆, 育成品种, SSR, 遗传多样性, 特异性

Abstract:

Analysis of the affinity relationship and genetic similarity among cultivars is important for crop genetic improvement. In this study, a total of 161 SSRs covering the entire soybean genome were analyzed for the genetic diversity, similarity and specificity of 10 important families composed of 179 cultivars using PowerMarker Ver. 3.25. The results showed that there were totally 1697 alleles, averaging 10.5 per locus, ranging from 5 to 24 with average polymorphism information content of 0.832, ranging from 0.545 to 0.943 in the population. According to the SSR cluster analysis, the 179 cultivars were clustered into six groups, eleven subgroups, with a tendency that the cultivars in a family tended to be grouped into a same cluster. There existed significant correlation (r = 0.67) between coefficient of parentage (CP) and genetic similarity coefficient (GSC) of the population. The CP and GSC values of A295, A133, A122, and A231 families were relatively low, which means that the genetic bases of the four families were relatively broad. In contrast, the CP and GSC values of A291, A201, A084, and A002 families were relatively high, indicating their genetic bases were relatively narrow due to more cultivars obtained from pure line selection. The CP and GSC values between the A019 family from Northeast China and other nine families were the lowest among all pairwise combinations of families. The genetic specificity analysis showed that there existed much more complementary alleles, specifically existent and specifically deficient alleles in A019 in comparison with in other families, indicating the former is distant from the latter. On the other hand, the families in Eco-region II and III, contained fewer complementary alleles, specifically existent and specifically deficient alleles, which might be due to some frequent germplasm exchange between the neighboring eco-regions. For example, there were no specifically existent alleles in A002, A231, A122 and no specifically deficient alleles in A084, A201, A034, and A231. The present results are of significance in broadening the genetic basis of soybean cultivar.

Key words: Soybean, Released cultivar, SSR, Genetic diversity, Specificity

[1]Cui Z L, Carter T E, Burton J W. Genetic diversity patterns in Chinese soybean cultivars based on coefficient of parentage. Crop Sci, 2000, 40: 1780–1793



[2]Zhou X G, Carter T E, Cui Z L, Miyazaki S, Burton J W. Genetic diversity patterns in Japanese soybean cultivars based on coefficient of parentage. Crop Sci, 2002, 42: 1331–1342



[3]盖钧镒, 崔章林. 中国大豆育成品种的亲本分析. 南京农业大学学报, 1994, 17: 19–23



Gai J Y, Cui Z L. Ancestral analysis of soybean cultivars released in China. J Nanjing Agric Univ, 1994, 17: 19–23 (in Chinese with English abstract)



[4]Sneller C H. Pedigree analysis of elite soybean lines. Crop Sci, 1994, 34: 1515–1522



[5]Bharadwaj C H, Satyavathi C T, Tiwari S P. Genetic base of soybean (Glycine max) varieties released in India as revealed by coefficient of parentage. Ind J Agric Sci, 2002, 72: 467−469



[6]Bonato A L V, Calvo E S, Geraldi I O, Arias C A A. Genetic similarity among soybean (Glycine max (L) Merrill) cultivars released in Brazil using AFLP markers. Genet Mol Biol, 2006, 29: 692–704



[7]Narvel J M, Fehr W R, Chu W S, Grant D, Shoemaker R C. Simple sequence repeat diversity among soybean plant introductions and elite genotypes. Crop Sci, 2000, 40: 1452–1458



[8]Abe J, Xu D H, Suzuki Y, Kanazawa A, Shimamoto Y. Soybean germplasm pools in Asia revealed by nuclear SSRs. Theor Appl Genet, 2003, 106: 445–453



[9]Mimura M, Coyne C J, Bambuck M W, Lumpkin T A. SSR diversity of vegetable soybean [Glycine max (L.) Merr.]. Genet Resour Crop Evol, 2007, 54: 497–508



[10]Wang L X, Guan R X, Li Y H, Lin F Y, Luan W J, Li W, Ma Y S, Liu Z X, Chang R Z, Qiu L J. Genetic diversity of Chinese spring soybean germplasm revealed by SSR markers. Plant Breed, 2008, 127: 56–61



[11]Ude G N, Kenworthy W J, Costa J M, Cregan P B, Alvernaz J. Genetic diversity of soybean cultivars from China, Japan, North America, and North American ancestral lines determined by amplified fragment length polymorphism. Crop Sci, 2003, 43: 1858–1867



[12]Fu Y, Peterson G W, Morrison M J. Genetic diversity of Canadian soybean cultivars and exotic germplasm revealed by simple sequence repeat markers. Crop Sci, 2007, 47: 1947–1954



[13]Yamanaka N, Sato H, Yang Z, Xu D H, Catelli L L, Arias C A A, Abdelnoor R V, Nepomuceno A L. Genetic relationships between Chinese, Japanese, and Brazilian soybean gene pools revealed by simple sequence repeat (SSR) markers. Genet Mol Biol, 2007, 30: 85–88



[14]Priolli R H G, Mendes-Junior C T, Sousa S M B, Sousa N E A, Contel E P B. Soybean genetic diversity in time and among breeding programs in Brazil. Pesq Agropec Bras, 2004, 39: 967–975



[15]Priolli R H G, Mendes-Junior C T, Arantes N E, Contel E P B. Characterization of Brazilian soybean cultivars using microsatellite markers. Genet Mol Biol, 2002, 25: 185–193



[16]关荣霞, 郭娟娟, 常汝镇, 邱丽娟. 国外种质对中国大豆育成品种遗传贡献的分子证据. 作物学报, 2007, 33: 1393–1398



Guan R X, Guo L L, Chang L Z, Qiu L J. Marker-based evidence of broadening the genetic base of Chinese soybeans by using introduced soybeans. Acta Agron Sin, 2007, 33: 1393–1398 (in Chinese with English abstract)



[17]张军, 赵团结, 盖钧镒. 亚洲大豆栽培品种遗传多样性、特异性和群体分化研究. 中国农业科学, 2008, 41: 3511–3520



Zhang J, Wang Z Q, Gai J Y. Genetic diversity, specificity and population differentiation of soybean cultivars in Asia. Agric Sci China, 2008, 41: 3511–3520 (in Chinese with English abstract)



[18]Maccaferri M, Sanguineti M C, Xie C, Smith J S, Tuberosa R. Relationships among durum wheat accessions: II. A comparison of molecular and pedigree information. Genome, 2007, 50: 385–399



[19]Van Becelaere G, Lubbers E L, Paterson A H, Chee P W. Pedigree- vs. DNA marker-based genetic similarity estimates in cotton. Crop Sci, 2005, 45: 2281–2287



[20]张军, 赵团结, 盖钧镒. 我国黄淮和南方主要大豆育成品种家族产量和品质优异等位变异在系谱中遗传的研究. 作物学报, 2009, 35: 191–201



Zhang J, Zhao T J, Gai J Y. Inheritance of elite alleles of yield and quality traits in the pedigrees of major cultivar families released in Huanghuai Valleys and Southern China . Acta Agron Sin, 2009, 35: 191–201 (in Chinese with English abstract)



[21]熊冬金, 赵团结, 盖钧镒. 中国大豆育成品种亲本分析. 中国农业科学, 2008, 41: 2589–2598



Xiong D J, Tao T J, Gai J Y. Parental analysis of soybean cultivars released in China. Agric Sci China, 2008, 41: 2589–2598 (in Chinese with English abstract)



[22]熊冬金, 赵团结, 盖钧镒. 1923—2005年中国大豆育成品种的核心祖先亲本分析. 大豆科学, 2007, 26: 2589–2598



Xiong D J, Tao T J, Gai J Y. The core ancestors of soybean cultivars released during 1923–2005 in China. Soybean Sci, 2007, 26: 2589–2598 (in Chinese with English abstract)



[23]Aljanabi S M, Forget L, Dookun A. An improved and rapid protocol for the isolation of polysaccharide- and polyphenol-free sugarcane DNA. Plant Mol Biol Rep, 1999, 17: 181



[24]Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122–128



[25]Cox T S, Kiang Y T, Gorman M B, Rodgers D M. Relationship between coefficient of parentage and genetic similarity indices in the soybean. Crop Sci,1985, 25: 529–532



[26]Cui, Z L, Carter T E, Burton J W, Genetic base of 651 Chinese soybean cultivars released during 1923 to 1995. Crop Sci, 2000, 40: 1470–1481



[27]Liu K, Muse S V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128–2129



[28]Nei M,Tajima F, Tateno Y. Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol, 1983, 19: 153–170



[29]盖钧镒, 赵团结, 崔章林, 邱家驯. 中国1923—1995年育成的651个大豆品种的遗传基础. 中国农业科学, 1998, 31: 35–43



Gai J Y, Tao T J, Cui Z L, Qiu J X. Nuclear and cytoplasmic contributions of germplasm from distinct areas to the soybean cultivars released during 1923–1995 in China. Agric Sci China, 1998, 31: 35–43 (in Chinese with English abstract)



[30]Barrett B A, Kidwell K K, Fox P N. Comparison of AFLP and pedigree-gased genetic diversity assessment methods uing wheat cultivars from the Pacific Northwest. Crop Sci, 1998, 38: 1271–1278

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[10] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[14] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[15] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!