欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (07): 1311-1319.doi: 10.3724/SP.J.1006.2014.01311

• 研究简报 • 上一篇    下一篇

国内外蚕豆核心种质SSR遗传多样性对比及微核心种质构建

姜俊烨1,杨涛1,王芳1,方俐1,仲伟文2,关建平1,宗绪晓1,*   

  1. 1 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程, 北京 100081; 2 甘肃农业大学生命科学技术学院, 甘肃兰州 730070
  • 收稿日期:2013-11-20 修回日期:2014-04-16 出版日期:2014-07-12 网络出版日期:2014-05-16
  • 通讯作者: 宗绪晓, E-mail: zongxuxiao@caas.cn, Tel: 010-62186651
  • 基金资助:

    本研究由科技部科技支撑项目(2013BAD01B05), 科技部国际科技合作项目(2010DFB33340), 国家自然科学基金项目(31101198)和农业部作物种质资源保护项目(NB2013-2129135-25)资助。

Genetic Diversity Analysis of Germplasm Resources and Construction of Mini-core Collections for Vicia faba L. at Home and Abroad

JIANG Jun-Ye1,YANG Tao1,WANG Fang1,FANG Li1,ZHONG Wei-Wen2,GUAN Jian-Ping1,ZONG Xu-Xiao1,*   

  1. 1 National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China?
  • Received:2013-11-20 Revised:2014-04-16 Published:2014-07-12 Published online:2014-05-16
  • Contact: 宗绪晓, E-mail: zongxuxiao@caas.cn, Tel: 010-62186651

摘要:

运用24对SSR引物, 对国内外1075份初级地理蚕豆核心种质的遗传多样性分析显示, 等位变异数、有效等位变异数及Shannon’s信息指数分别为8.54、2.26和1.02;对全部参试资源进行聚类分析, 没有发现明显的群体结构, 表明初级地理核心种质的代表性较好, 遗传背景较广泛。之后采用每个类内随机抽样的方法构建含有129份国内资源和63份国外资源的蚕豆微核心种质, 等位基因变异数、有效等位变异数和Shannon’s信息指数的保留比例分别为87.32%, 101.26%, 101.82%;经t检验得出微核心种质与全部参试资源群体间遗传多样性差异不显著, 表明构建的微核心种质的遗传多样性可以代表初级地理蚕豆核心种质。

关键词: SSR, 蚕豆, 遗传多样性, 核心种质, 微核心种质

Abstract:

The genetic diversity of 1075 genotypes from a primary geographic core collection of faba bean (Vicia faba L.) was analyzed by using SSR markers. The number of observed and effective alleles of 8.54 and 2.26, the Shannon’s information index of 1.02, were detected. Unconspicuous population structure among the 1075 genotypes indicated an extensive genetic background and nice representativeness. A mini-core collection comprised 129 Chinese and 63 oversea faba bean genotypes was randomly sampled from each cluster of dendrogram including all the 1075 tested genotypes. The observed alleles, effective alleles and Shannon’s information index of the mini-core collection covered 87.32%, 101.26%, and 101.82% that of primary geographic core collection respectively. The t-test did not show significant differences in genetic diversity between the primary geographic core collection and the mini-core collection, which validated the representativeness of the mini-core collection in genetic diversity of faba bean. The mini-core collection will play an important role in exploration of new genes within faba bean.

Key words: SSR, Faba bean, Genetic diversity, Geographic core collection, Mini-core collection

[1]郑卓杰, 王述民, 宗绪晓. 中国食用豆类学. 北京: 中国农业出版社, 1997. pp 93–140



Zheng Z J, Wang S M, Zong X X. Food Legume Crops in China. Beijing: China Agriculture Press, 1997. pp 93–140 (in Chinese)



[2]FAO. Statistical Database, Food and Agriculture Organization (FAO) of the United Nations, Rome, 2012. http://faostat.fao.org/



[3]Vande V W, Waugh R, Duncan N. Development of 8 genetic linkage map Vicia faba using molecular and biochemical techniques. Aspects Appl Biol, 199l, 27: 49–54



[4]Klos K L E, Paz M M, Marek L F, Cregan P B, Shoemaker R C. Molecular markers useful for detecting resistance to brown stem rot in soybean. Crop Sci, 2000, 40: 1445–1452



[5]Ma Y, Bao S Y, Yang T, Hu J G, Guan J P, He Y H, Wang X J, Wan Y L, Sun X L, Jiang J Y, Gong C X, Zong X X. Genetic linkage map of Chinese native variety faba bean (Vicia faba L.) based on simple sequence repeat markers. Plant Breed, 132: 397–400



[6]Zong X X, Liu X J, Guan J P, Wang S M, Liu Q C, Paul J G, Redden R. Molecular variation among Chinese and global winter faba bean germplasm. Theor Appl Genet, 2009, 118: 971–978



[7]Wang H F, Zong X X, Guan J P, Yang T, Sun X L, Ma Y, Redden R. Genetic diversity and relationship of global faba bean (Vicia faba L.) germplasm revealed by ISSR markers. Theor Appl Genet, 2012, 124: 789–797



[8]Frankel O H, Brown A H D. Current plant genetic resources-a-critical appraisal. In: Genetics: New Frontiers Vol. IV. Oxford and IBH Publ. Co., New Delhi, India, pp. 1984:1-11



[9]李自超, 张洪亮, 曹永生, 裘宗恩, 魏兴华, 汤圣祥, 余萍, 王象坤. 中国地方稻种资源初级核心种质取样策略研究. 作物学报, 2003, 29: 20–24



Li Z C, Zhang H L, Cao Y S, Qiu Z E, Wei X H, Tang S X, Yu P, Wang X K. Studies on the sampling strategy for primary core collection of Chinese ingenious rice. Acta Agron Sin, 2003, 29: 20–24 (in Chinese with English abstract)



[10]Wang L X, Guan Y, Guan R X, Li Y H, Ma Y S, Dong Z M, Liu X, Zhang H Y, Zhang Y Q, Liu Z X, Chang R Z, Xu H M, Li L H, Lin F Y, Luan W J, Yan Z, Ning X H, Zhu L, Cui Y H, Piao R H, Liu Y, Chen P Y, Qiu L J. Establishment of Chinese soybean (Glycine max) core collections with agronomic traits and SSR markers. Euphytica, 2006, 151: 215–223



[11]王丽侠, 李英慧, 李伟, 朱莉, 关媛, 宁学成, 关荣霞, 刘章雄, 常汝镇, 邱丽娟. 长江春大豆核心种质构建及分析. 生物多样性, 2004, 12: 578–585



Wang L X, Li Y H, Li W, Zhu L, Guan Y, Ning X C, Guan R X, Liu Z X, Chang R Z, Qiu L J. Establishment of a core collection of Changjiang spring sowing soybean. Biodivers Sci, 2004, 12: 578–585 (in Chinese with English abstract)



[12]刘勇, 孙中海, 刘德春, 吴波, 周群. 利用分子标记技术选择柚类核心种质资源. 果树学报, 2006, 23: 339–345



Liu Y, Sun Z H, Liu D C, Wu B, Zhou Q. Screening the core collection of pomelo germplasm based on molecular marker. J Fruit Sci, 2006, 23: 339–345 (in Chinese with English abstract)



[13]杨美, 付杰, 向巧彦, 刘艳玲. 利用AFLP分子标记技术构建花莲核心种质资源. 中国农业科学, 2011, 44: 3193–3205



Yang M, Fu J, Xiang Q Y, Liu Y L. The core-collection construction of flower lotus based on AFLP molecular markers. Sci Agric Sin, 2011, 44: 3193–3205 (in Chinese with English abstract)



[14]Ellis P R, Pink D A C, Phelps K, Jukes P L, Breeds S E, Pinnegar A E. Evaluation of a core collection of Brassica oleracea accessions for resistance to Brevicoryne brassicae, the cabbage aphid. Euphytica, 1998, 103: 149–160



[15]Miklas P N, Delorme R, Hannan R, Dickson M H. Using a sub sample of the core collection to identify new sources of resistance to white mold in common bean. Crop Sci, 1999, 39: 569–573



[16]Santos M R, Dias J S. Evaluation of a core collection of Brassica oleracea accessions for resistance to white rust of crucifers (Albugo candida) at the cotyledon stage. Genetic Res Crop Evol, 2004, 51: 713–722



[17]Dellaporta S L, Wood J, Hicks J B. A plant DNA mini preparation: Version II. Plant Mol Biol, 1983, 1: 19–21



[18]Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 149–151



[19]Rohlf F. NtSYS pc: Numerical Taxonomy System (Ver. 2. 2). Setauket, New York: Exeter Publishing, Ltd., 2006



[20]Falush D, Stephens M, Pritchard J K. Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics, 2003, 164: 1567–1587



[21]Yeh F C, Boyle T J B. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot, 1997, 129: 157



[22]崔艳华, 邱丽娟, 常汝镇, 吕文河. 植物核心种质研究进展. 植物遗传资源学报, 2003, 4: 279–284



Cui Y H, Qiu L J, Chang R Z, Lü W H. Advances in research on core collection of plant germplasm resources. J Plant Genet Resour, 2003, 4: 279–284 (in Chinese with English abstract)



[23]杨菁, 迟德钊, 刘玉皎, 马晓岗. 基于形态性状的青海蚕豆核心种质的初步构建. 分子植物育种, 2009, 7: 599–606



Yang J, Chi D Z, Liu Y J, Ma X G. Preliminary construction of core collection of broad bean in Qinghai based on morphological traits. Mol Plant Breed, 2009, 7: 599–606 (in Chinese with English abstract)



[24]Zong X X, Redden R J, Liu C Q, Wang S M, Guan J P, Liu J, Xu Y H, Liu X J, Gu J, Yan L, Ades P, Ford R. Analysis of a diverse global Pisum sp. collection and comparison to a Chinese local P. sativum collection with microsatellite markers. Theor Appl Genet, 2009, 118: 193–204



[25]刘玉皎, 侯万伟. 青海蚕豆种质资源AFLP多样性分析和核心资源构建. 甘肃农业大学学报, 2011, 46(4): 62–68



Liu Y J, Hou W W. Diversity analysis on germplasm resources by AFLP and core resources construction of Vicia faba in Qinghai. J Gansu Agric Univ, 2011, 46(4): 62–68 (in Chinese with English abstract)



[26]Hintum V Th J L, Bothmer R V, Visser D L. Sampling strategies for composing a core collection of cultivated barley (Hordeum vulgare s. lat.) collection in China. Hereditas, 1995, 122: 7–17



[27]Balfourier F, Charmet G, Prosperi J M, Goulard M, Monestiez P. Comparison of different spatial strategies for sampling a core collection of natural populations of folder crops. Genet Sel Evol, 1998, 30: 215–235



[28]Ortiz R, Ruiz-Tapia F N, Mujica-Sanchez A. Sampling strategy for a core collection of Peruvian quinoa germplasm. Theor Appl Genet, 1998, 96: 475–483



[29]Gizlicel Z. Genetic base for North American public soybean cultivars released between 1947–1988. Crop Sci, 1994, 34: 1143–1147



[30]Malosetti M, Abadie T. Sampling strategy to develop a core collection of Uruguayan maize landraces based on morphological traits. Genet Res Crop Evol, 2001, 48: 381–390



[31]Chandra S, Huaman Z, Krishna HS, Ortiz R. Optimal sampling strategy and core collection size of Andean tetraploid potato based on isozyme data: a simulation study. Theor Appl Genet, 2002, 104: 1325–1334

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[3] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[4] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[5] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[6] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[7] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[8] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[9] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[10] 王恒波,祁舒婷,陈姝琦,郭晋隆,阙友雄. 甘蔗栽培种单倍体基因组SSR位点的发掘与应用[J]. 作物学报, 2020, 46(4): 631-642.
[11] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[12] 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913.
[13] 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506.
[14] 刘易科,朱展望,陈泠,邹娟,佟汉文,朱光,何伟杰,张宇庆,高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性[J]. 作物学报, 2020, 46(02): 307-314.
[15] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!