欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (08): 1191-1200.doi: 10.3724/SP.J.1006.2015.01191

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

胁迫相关蛋白激酶基因OsSAPK2调控水稻抗白叶枯病反应

胡丹丹1,2,张帆2,黄立钰2,卓大龙1,2,张帆2,周永力2,*,石英尧1,*,黎志康2   

  1. 1安徽农业大学农学院,安徽合肥 230036;2中国农业科学院作物科学研究所,北京 100081
  • 收稿日期:2015-01-08 修回日期:2015-05-04 出版日期:2015-08-12 网络出版日期:2015-06-03
  • 通讯作者: 石英尧,E-mail: shiyy123@163.com, Tel: 0551-65786213; 周永力,E-mail: zhouylcaas@126.com
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2014AA10A603), 比尔盖茨基金(OPP51587)和中国农业科学院科技创新工程资助。

Stress-activated Protein Kinase OsSAPK2 Involved in Regulating Resistant Response to Xanthomonas oryzae pv. oryzae in Rice

HU Dan-Dan1,2,ZHANG Fan2,HUANG Li-Yu2,ZHUO Da-Long1,2,ZHANG Fan2,ZHOU Yong-Li2,*,SHI Ying-Yao2,*,LI Zhi-Kang2   

  1. 1 College of Agronomy, Anhui Agricultural University, Hefei 230036, China; 2 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2015-01-08 Revised:2015-05-04 Published:2015-08-12 Published online:2015-06-03
  • Contact: 石英尧,E-mail: shiyy123@163.com, Tel: 0551-65786213; 周永力,E-mail: zhouylcaas@126.com

摘要:

水稻蔗糖非酵解型蛋白激酶SnRK2,又称胁迫相关蛋白激酶(stress-activated protein kinase genes in rice, OsSAPKs),在调控水稻非生物胁迫信号传导中起着重要作用。本研究对OsSAPK2的结构及其在水稻抗白叶枯病反应中的功能进行了初步研究。结果表明OsSAPK2定位于细胞核和细胞质内,与OsSAPK1OsSAPK3同属于Kulik’s II组。OsSAPK2-RNAi转基因水稻中OsSAPK2下调表达,人工接种水稻白叶枯病菌后,转基因水稻比受体对照的病斑长度显著增长,抗病相关基因OsLRR1OsHIR1表达水平下降,感病相关基因OsMAPK5表达水平升高。此外,OsSAPK2具有自激活活性,可能与OsMAPK5等胁迫相关蛋白互作。上述结果为进一步研究OsSAPK2调控水稻抗白叶枯病的分子机制提供了信息。

关键词: OsSAPK2, 水稻, 白叶枯病, RNA干扰

Abstract:

Sucrose nonfermenting1-related protein kinase2 (SnRK2), also known as stress-activated protein kinase (OsSAPKs), plays an important role in signal transduction. In this study, we analyzed the structure and function of OsSAPK2 in response to Xanthomonas oryzae pv. oryzae (Xoo) infection. The result suggested that OsSAPK2 is a member of Kulik’s II group like OsSAPK1, OsSAPK3 and located in nucleus and cytoplasm. OsSAPK2 and disease-resistant genes OsLRR1, OsHIR1 were down regulated in OsSAPK2-RNAi transgenic rice, while disease-related gene OsMAPK5 was up regulated. Compared with non-transgenic plants, transgenic plants were more susceptible to Xoo infection. OsSAPK2 could activate itself and interact with several stress-related proteins. These results indicate that OsSAPK2 might be involved in the regulation of resistance response by regulating the expression of OsLRR1, OsHIR1, OsMAPK5 and interacting with stress-related proteins.

Key words: OsSAPK2, Oryza sativa, Bacterial blight, RNAi

[1]Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 2005, 17: 3470–3488



[2]Furuya T, Matsuoka D, Nanmori T. Membrane rigidification functions upstream of the MEKK1-MKK2-MPK4 cascade during cold acclimation in Arabidopsis thaliana. FEBS Lett, 2014, 588: 2025–2030



[3]Kouzai Y, Mochizuki S, Nakajima K, Desaki Y, Hayafune M, Miyazaki H, Yokotani N, Ozawa K, Minami E, Kaku H, Shibuya N, Nishizawa Y. Targeted gene disruption of OsCERK1 reveals its indispensable role in chitin perception and involvement in the peptidoglycan response and immunity in rice. Mol Plant Microbe Interact, 2014, 27: 975–982



[4]王永波, 高世庆, 唐益苗, 刘美英, 郭丽香, 张朝, 赵昌平. 植物蔗糖非发酵-1相关蛋白激酶家族研究进展. 生物技术通报, 2010, (11): 7–18



Wang Y B, Gao S Q, Tang Y M, Liu M Y, Guo L X, Zhang Z, Zhao C P. Advance of the sucrose non-fermenting-1-related protein in kinase family in plants. Biotechnol Bull, 2010, (11): 7–18 (in Chinese with English abstract)



[5]Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G. SnRK2 protein kinases-key regulators of plant response to abiotic stresses. OMICS, 2011, 15: 859–872



[6]Kobayashi Y, Yamamoto S, Minami H, Kagay Y, Hattori T. Diferential activation of the rice sucrose nonfermenting1-related protein kinase 2 family by hyperosmotic stress and abscisic acid. Plant Cell, 2004, 16: 1163–1177



[7]Boudsocq M, Barbier-Brygoo H, Laurière C. Identification of nine sucrose nonfermenting1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem, 2004, 279: 41758–41766



[8]Li L B, Zhang Y R, Liu K, Zhong F, Fang Z J, Sun Q X, Gao J W. Identification and bioinformatics analysis of SnRK2 and CIPK family genes in sorghum. Agric Sci China, 2010, 9: 19–30



[9]Huai J, Wang M, He J, Zheng J, Dong Z, Lü H, Zhao J, Wang G. Cloning and characterization of the SnRK2 gene family from Zea mays. Plant Cell Rep, 2008, 27: 1861–1868



[10]Kelner A, Pekala I, Kaczanowski S, Muszynska G, Hardie D G, Dobrowolska G. Biochemical characterization of the tobacco 42-kDa protein kinase activated by osmotic stress. Plant Physiol, 2004, 136: 3255–3265.



[11]Anderberg R J, Walker-Simmons M K. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Natl Acad Sci USA, 1992, 89: 10183–10187



[12]Holappa L D, Walker-Simmons M K. The wheat abscisic acid-responsive protein kinase mRNA, PKABA1, is up-regulated by dehydration, cold temperature, and osmotic stress. Plant Physiol, 1995, 108: 1203–1210



[13]Mao X G, Zhang H Y, Tian S J, Chang X P, Jing R L. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot, 2010, 61: 683–696



[14]Zhang H Y, Mao X G, Zhang J N, Chang X P, Wang C S, Jing R L. Genetic diversity analysis of abiotic stress response gene TaSnRK2.7-A incommon wheat. Genetica, 2011, 139: 743–753



[15]Monks D E, Aghoram K, Courtney P D, DeWald D B, Dewey R E. Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell, 13: 1205–1219



[16]Miko?ajczyk M, Awotunde O S, Muszyńska G, Klessig D F, Dobrowolska G. Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell, 2000, 12: 165–178



[17]Yoon H W, Kim M C, Shin P G, Kim J S, Kim C Y, Lee S Y. Hwang I, Bahk J D, Hong J C, Han C, Cho M J. Differential expression of two functional serine/threonine protein kinases from soybean that have an unusual acidic domain at the carboxy terminus. Mol Gen Genet, 1997, 255: 359–371



[18]Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol, 2009, 50: 1345–1363



[19]Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant, 2013, 147: 15–27



[20]Shao Y, Qin Y, Zou Y J, Ma F W. Genome-wide identification and expression profiling of the SnRK2 gene family in Malus prunifolia. Gene, 2014, 552: 87–97



[21]Mew T M. Current status and future prospects of research on bacterial blight of rice. Annu Rev Phytopathol, 1987, 25: 359–382



[22]NiÑo-Liu D O, Ronald P C, Bogdanove A J. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol, 2006, 7: 303–324



[23]Xu M Y, Huang L Y, Zhang F, Zhu L H, Zhou Y L, Li Z K. Genome-wide phylogenetic analysis of stress-activated protein kinase genes in rice (OsSAPKs) and expression profiling in response to Xanthomonas oryzae pv. oryzicola infection. Plant Mol Biol Rep, 2013, 31: 877–885



[24]杨立桃, 赵志辉, 丁嘉羽, 张承妹, 贾军伟, 张大兵. 利用实时荧光定量PCR方法分析转基因水稻外源基因拷贝数. 中国食品卫生杂志, 2005, 17(2): 140–144



Yang L T, Zhao Z H, Ding J Y, Zhang C M, Jia J W, Zhang D J. Estimating copy number of transgenes in transformed rice by real-time quantitative PCR. Chin J Food Hygiene, 2005, 17(2): 140–144



[25]Cronk Q C. Plant evolution and development in a post-genomic context. Nat Rev Genet, 2001, 2: 607–619



[26]Saha J, Chatterjee C, Sengupta A, Gupta K, Gupta B. Genome-wide analysis and evolutionary study of sucrose non-fermenting1-related protein kinase 2 (SnRK2) gene family members in Arabidopsis and Oryza. Comput Biol Chem, 2014, 49: 59–70



[27]Shukla V, Mattoo A K. Sucrose non-fermenting 1-related protein kinase 2 (SnRK2): a family of protein kinases involved in hyperosmotic stress signaling. Physiol Mol Biol Plants, 2008, 14: 91–100



[28]Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell Environ, 2015, 38: 35–49



[29]Feng C Z, Chen Y, Wang C, Kong Y H, Wu W H, Chen Y F. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. Plant J, 2014, 80: 654–668



[30]Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G. A domain swap approach reveals a role of the plant wall-associated kinase1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci USA, 2010, 107: 9452–9457



[31]Zhou L, Cheung M Y, Zhang Q, Lei C L, Zhang S H, Sun S M, Lam H M. A novel simple extracellular leucine-rich repeat (eLRR) domain protein from rice (OsLRR1) enters the endosomal pathway and interacts with the hypersensitive-induced reaction protein 1 (OsHIR1). Plant Cell Environ, 2009, 32: 1804–1820



[32]Zhou L, Cheung M Y, Li M W, Fu Y, Sun Z, Sun S M, Lam H M. Rice hypersensitive induced reaction protein1 (OsHIR1) associates with plasma membrane and triggers hypersensitive cell death. BMC Plant Biol, 2010, 10: 290



[33]Xiong L Z, Yang Y N. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 2003, 15: 745–759



[34]Serra T S, Figueiredo D D, Cordeiro A M, Almeida D M, Lourenço T, Abreu I A, Sebastián A, Fernandes L, Contreras-Moreira B, Oliveira M M, Saibo N J. OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. Plant Mol Biol, 2013, 82: 439–455



[35]Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 2006, 140: 411–432



[36]Cheong Y H, Moon B C, Kim J K, Kim C Y, Kim M C, Kim I H, Park C Y, Kim J C, Park B O, Koo S C, Yoon H W, Chung W S, Lim C O, Lee S Y, Cho M J. BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol, 2003, 132: 1961–1972
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!