欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (11): 1640-1647.doi: 10.3724/SP.J.1006.2015.01640

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦粒重基因TaGW2-6A等位变异的组成分析及育种选择

寇程,高欣,李立群,李扬,王中华,李学军*   

  1. 西北农林科技大学农学院 / 旱区作物逆境生物学国家重点实验室,陕西杨凌 712100
  • 收稿日期:2015-04-20 修回日期:2015-07-20 出版日期:2015-11-12 网络出版日期:2015-08-05
  • 基金资助:

    本研究由农业部高产转基因小麦新品种培育科技重大专项(2013ZX08002-003), 陕西省科技统筹创新工程计划项目(2014KTZB02-01-01)和陕西省重点科技创新团队计划项目(2014KCT-25)资助。

Composition and Selection of TaGW2-6A Alleles for Wheat Kernel Weight

KOU Cheng,GAO Xin,LI Li-Qun,LI Yang,WANG Zhong-Hua,LI Xue-Jun*   

  1. College of Agronomy, Northwest A&F University / State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, China
  • Received:2015-04-20 Revised:2015-07-20 Published:2015-11-12 Published online:2015-08-05

摘要:

位于6A染色体的TaGW2是控制小麦籽粒大小的关键基因,已发现其第8外显子有一个T碱基插入等位变异,其启动子区存在Hap-6A-AHap-6A-G等位变异利用高分辨率熔解曲线分析技术(high resolution melting curve analysis, HRM)Hap-6A-P1/P2分子标记检测了316份小麦品种()TaGW2-6A基因在上述2个位点的等位变异,分析了其不同等位变异与粒长、粒宽和千粒重的相关性,并以大面积推广的大粒品种周麦22为例,解析TaGW2-6A基因优异等位变异在系谱选育中的遗传传递。共检测到61T碱基插入等位变异(命名为977T基因型)255份无T碱基插入的等位变异(977-基因型)材料; 977T基因型中,Hap-6A-A (TA)Hap-6A-G (TG)单倍型材料分别为29份和32份,在977-基因型中,Hap-6A-A (-A)Hap-6A-G (-G)单倍型材料分别为160份和95份。关联分析表明,977T基因型与977-基因型的粒长(P<0.05)、粒宽(P<0.001)和千粒重(P<0.001)均有显著差异,Hap-6A-A单倍型与Hap-6A-G单倍型的粒长(P<0.05)、粒宽(P<0.05)和千粒重(P<0.001)也有显著差异。TaGW2-6A基因编码区和启动子区等位变异之间存在相互作用,共同调控小麦籽粒的大小,其中TA单倍型比TG-A-G单倍型更能增加小麦的粒宽和粒重,是优异的等位变异组合。周麦22TA单倍型,系谱分析表明,该等位变异并非来源于亲本周8425B,而是来源于亲本辉县红,且TA单倍型能够稳定遗传,但是在常规育种选择过程中可能会丢失。本研究筛选出的TaGW2-6A优异等位变异TA单倍型材料及高通量分子检测方法为分子标记辅助育种提供材料和方法依据。

关键词: 小麦籽粒性状, TaGW2基因, 等位变异, 高分辨率熔解曲线(HRM), 分子标记辅助选择

Abstract:

TaGW2 on chromosome 6A is a key gene governing kernel size of wheat (Triticum aestivum L.). There are a single T-base insertion in the eighth exon of TaGW2 (977 bp) and two SNPs (Hap-6A-A and Hap-6A-G) in the promoter region. In this study, 316 wheat varieties (lines) were detected by high resolution melting curve (HRM) analysis and Hap-6A-P1/P2 molecular marker for TaGW2-6A allelic variations and their correlations with kernel length, kernel width, and thousand-kernel weight were analyzed. Furthermore, the TaGW2-6A allelic variations were traced in the pedigree of the famous large-kernel variety Zhoumai 22. In the 977 bp position, 61 and 255 lines were detected with and without the T-base insertion, which were designated 977T and 977- genotypes, respectively. In the 977T genotypes, 29 lines were Hap-6A-A (TA) haplotype and 32 lines were Hap-6A-G (TG) haplotype. In the 977- genotypes, 160 lines were Hap-6A-A (-A) haplotype and 95 lines were Hap-6A-G (-G) haplotype. Significant difference was found in kernel length (P < 0.05), kernel width (P < 0.001) and thousand-kernel weight (P < 0.001) between 977T and 977- genotypes. Similarly, significant difference was also found in kernel length (P < 0.05), kernel width (P < 0.05) and thousand-kernel weight (P < 0.001) between Hap-6A-A and Hap-6A-G haplotypes. The allelic variation in TaGW2-6A encoding region and the promoter region jointly contributed to kernel size, and the TA haplotype was superior to -A, TG, and -G haplotypes in increasing kernel width and weight. According to pedigree analysis, the Zhoumai 22 inherited the TA haplotype from the parent Huixianhong, not form the popular parent Zhou 8425B. This haplotype is inheritable stably but tends to be lost in the process of wheat breeding. The results of this study provide not only a high-throughput molecular technique to detect wheat TA haplotype but also breeding materials in marker-assisted selection of wheat.

Key words:  Grain traits of wheat, TaGW2, Allelic variation, High resolution melting curve (HRM), Marker-assisted selection

[1]Fox J L. Whatever happened to GM wheat? Nature Biotechnology, 2009, 27: 974–976



[2]庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003. pp 497–518



Zhuang Q S. Chinese Wheat Impronement and Pedigree Analysis. Beijing: China Agriculture Press, 2003. pp 497–518 (in Chinese)



[3]许为刚, 胡琳, 吴兆苏, 盖钧镒. 关中地区小麦品种产量与产量结构遗传改良的研究. 作物学报, 2000, 26: 352–358



Xu W G, Hu L,Wu Z S, Gai J Y. Studies on genetic improvement of yield and yield components of wheat cultivars in Mid-Shaanxi area. Acta Agron Sin, 2000, 26: 352–358 (in Chinese with English abstract)



[4]胡延吉, 赵檀方. 小麦高产育种中粒重作用的研究. 作物学报, 1995, 21: 671–678



Hu Y J, Zhao T F.Studies on the effect of grain weight in breeding of high-yield wheat. Acta Agron Sin,1995, 21: 671–678 (in Chinese with English abstract)



[5]Wu W, Li C J, Ma B L,Shah F, Liu Y, Liao Y C. Genetic progress in wheat yield and associated traits in China since 1945 and future prospects. Euphytica, 2013, 196: 155–168



[6]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623–630



[7]姜颖, 曹言勇, 路运才, 唐保军, 王利锋, 李会勇. 拟南芥中RING型E3泛素连接酶基因AtGW2的克隆和功能分析. 植物遗传资源学报, 2011, 12: 448–454



Jiang Y, Cao Y Y, Lu Y C, Tang B J, Wang L F, Li H Y. Cloning and functional analysis of Arabidopsis thaliana AtGW2, a RING-type E3 ubiquitin ligase protein. J Plant Genet Resours, 2011, 12: 448–454 (in Chinese with English abstract)



[8]Li Q, Li L, Yang X H,Warburton M L, Bai G H, Dai J R, Li J S, Yan J B. Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol, 2010, 10: 1–15



[9]Hong Y T, Chen L F, Du L P, Su Z Q, Wang J F, Ye X G, Li Q, Zhang Z Y. Transcript suppression of TaGW2 increased grain width and weight in bread wheat. Funct Integr Genomics, 2014, 14: 341–349



[10]Yang Z B, Bai Z Y, Li X L, Wang P, Wu Q X, Yang L, Li L Q, Li X J. SNP identification and allelic-specific PCR markers development for TaGW2, a gene linked to wheat kernel weight. Theor Appl Genet, 2012, 125: 1057–1068



[11]Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2011, 122: 211–223



[12]Gawel N J, Jarret R L. A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol Biol Rep, 1991, 9: 262–266



[13]Liu J, Huang S M, Sun M Y, Liu S Y, Liu Y M, Wang W X, Zhang X R, Wang H Z, Hua W. An improved allele-specific PCR primer design method for SNP marker analysis and its application. Plant Methods, 2012, 8: 1–9



[14]Xu Y B, Crouch J H. Marker-assisted selection in plant breeding: from publications to practice. Crop Sci, 2008, 48: 391–407



[15]Gundry C N, Vandersteen J G, Reed G H, Pryor R J, Chen J, Wittwer C T. Amplicon melting analysis with labeled primers: a closed-tube method for differentiating homozygotes and heterozygotes. Mol Diagnostics and Genet, 2003, 49: 396–406



[16]甘四明, 李发根, 翁启杰, 李梅, 周长品, 于晓丽. 高分辨率熔解及其在植物DNA变异检测中的应用. 基因组学与应用生物学(网络版), 2010, 29: 5. DOI: 10.5376/gab.cn.2010.29.0005. http://editors.wanfangdata.com.cn/openaccessperiodical/Details/6ef1e733-8363-4a26-b115-5d1482d20353



Gan S M, Li F G, Wong Q J, Li M, Zhou C P, Yu X L. High-resolution melting and its applications in plant dna variation detection. Genomics Appl Biol (Online), 2010, 29: 5. DOI: 10.5376/gab.cn.2010.29.0005. http://editors.wanfangdata.com.cn/openaccessperiodical/Details/6ef1e733-8363-4a26-b115- 5d1482d20353 (in Chinese with English abstract)



[17]Ganopoulos I, Bosmali I, Madesis P, Tsaftaris A. Microsatellite genotyping with HRM (high resolution melting) analysis for identification of the PGI common bean variety Plake Megalosperma Prespon. Eur Food Res Technol, 2012, 234: 501–508



[18]Jeong H J, Jo Y D, Park S W, Kang B C. Identification of Capsicum species using SNP markers based on high resolution melting analysis. Genome, 2010, 53: 1029–1040



[19]Han Y H, Khu D M, Monteros M J. High-resolution melting analysis for SNP genotyping and mapping in tetraploid alfalfa (Medicago sativa L.). Mol Breed, 2011, 29: 489–501



[20]Hofinger B J, Jing H C, Hammond-Kosack K E, Kanyuka K. High-resolution melting analysis of cDNA-derived PCR amplicons for rapid and cost-effective identification of novel alleles in barley. Theor Appl Genet, 2009, 119: 851–865

[1] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[2] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[3] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[4] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[5] 张福彦, 程仲杰, 陈晓杰, 王嘉欢, 陈锋, 范家霖, 张建伟, 杨保安. 黄淮麦区小麦粒重基因等位变异的分子鉴定及育种应用[J]. 作物学报, 2021, 47(11): 2091-2098.
[6] 张平,姜一梅,曹鹏辉,张福鳞,伍洪铭,蔡梦颖,刘世家,田云录,江玲,万建民. 通过分子标记辅助选择将耐储藏主效QTL qSS-9 Kas转入宁粳4号提高其种子贮藏能力[J]. 作物学报, 2019, 45(3): 335-343.
[7] 杨勇,陆彦,郭淑青,石仲慧,赵杰,范晓磊,李钱峰,刘巧泉,张昌泉. 籼稻背景下导入Wx in等位基因改良稻米食味和理化品质[J]. 作物学报, 2019, 45(11): 1628-1637.
[8] 张安宁,刘毅,王飞名,谢岳文,孔德艳,聂元元,张分云,毕俊国,余新桥,刘国兰,罗利军. 节水抗旱稻恢复系的抗褐飞虱分子标记辅助选育及抗性评价[J]. 作物学报, 2019, 45(11): 1764-1769.
[9] 田宇,杨蕾,李英慧,邱丽娟. 抗大豆胞囊线虫SCN3-11位点的KASP标记开发和利用[J]. 作物学报, 2018, 44(11): 1600-1611.
[10] 朱展望, 徐登安, 程顺和, 高春保, 夏先春, 郝元峰, 何中虎. 中国小麦品种抗赤霉病基因Fhb1的鉴定与溯源[J]. 作物学报, 2018, 44(04): 473-482.
[11] 张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 杨丽, 李洪杰, 周阳. 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性[J]. 作物学报, 2018, 44(04): 505-511.
[12] 姚姝,陈涛,张亚东,朱镇,赵庆勇,周丽慧,赵凌,赵春芳,王才林. 利用分子标记辅助选择聚合水稻Pi-taPi-bWx-mq基因[J]. 作物学报, 2017, 43(11): 1622-1631.
[13] 王娟,董承光,刘丽,孔宪辉,王旭文,余渝. 棉花适宜机采相关性状的SSR标记关联分析及优异等位基因挖掘[J]. 作物学报, 2017, 43(07): 954-966.
[14] 董雪,刘梦,赵献林,冯玉梅,杨燕. 普通小麦近缘种低分子量麦谷蛋白亚基Glu-A3基因的分离和鉴定[J]. 作物学报, 2017, 43(06): 829-838.
[15] 童治军,焦芳婵,方敦煌,陈学军,吴兴富,曾建敏,谢贺,张谊寒,肖炳光*. 烟草染色体片段代换系的构建与遗传评价[J]. 作物学报, 2016, 42(11): 1609-1619.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!