[1] 宛晓春. 茶叶生物化学(第3版). 北京: 中国农业出版社, 2003. pp 9–30
Wan X C. Tea Biochemistry, 3th edn. Beijing: China Agriculture Press, 2003. pp 9–30 (in Chinese)
[2] Shirley B W. Flaconoid biosynthesis: A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol, 2001, 126: 485–493
[3] Seitz C, Eder C, Deiml B, Kellner S, Martens S, Forkmann G. Cloning, functional identification and sequence analysis of flavonoid 3’-hydroxylase and flavonoid 3’,5’-hydroxylase cDNAs reveals independent evolution of flavonoid 3’,5’-hydroxylase in the Asteraceae family. Plant Mol Biol, 2006, 61: 365–381
[4] Ashihara H, Deng W W, Mullen W, Crozier A. Distibution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes. Phytochemistry, 2010, 71: 559–566
[5] 吕海鹏, 费旭元, 梁名志, 王立波, 林智. 茶树特异品种“紫娟”中的花青素组分分析. 食品科学, 2012, 33(22): 203–206
Lü H P, Fei X Y, Liang M Z, Wang L B, Lin Z. Analysis of anthocyanins constituents in the special tea germplasms of Zijuan. Food Sci, 2012, 33(22): 203–206 (in Chinese with English abstract)
[6] Faria A, Oliveira J, Neves P, Gameiro P, Santo-Buelga C, Freitas V D, Mateus N. Antioxidant properties of prepared blueberry (Vaccinium myrtillus) extracts. J Agric Food Chem, 2005, 53: 6896–6902
[7] Kowalczyk E, Krzesinski P, Kura M, Szmigiel B, Blaszczyk J. Anthocyanins in medicine. Pol J Pharmacol, 2003, 55: 699–702
[8] Nakaishi H, Matsumoto H, Tominaga S, Hirayama M. Effects of black currant anthocyanoside intake on dark adaptation and VDT work-induced transient refractive alteration in healthy humans. Altern Med Rev, 2000, 5: 553–562
[9] Terahara N, Takeda Y, Nesumi A, Honda T. Anthocyanins from red flower tea (Benibana-cha), Camellia sinensis. Phytochemistry, 2001, 56: 359−361
[10] Saito T, Honma D, Tagashira M, Kanda T, Nesumi A, Maeda-Yamamoto M. Anthocyanins from new red leaf tea “Sunrouge”. J Agric Food Chem, 2011, 59: 4779−4782
[11] 包云秀, 夏丽飞, 李友勇, 梁名志. 茶树新品种“紫娟”. 园艺学报, 2008, 35: 934
Bao Y X, Xia L F, Li Y Y, Liang M Z. A new tea tree cultivar ‘Zijuan’. Acta Hort Sin, 2008, 35: 934 (in Chinese with English abstract)
[12] Meada-Yamamoto M, Saito T, Nesumi A, Tokuda Y, Ema K, Honma D, Ogino A, Monobe M, Murakami A, Murakami A, Tachibana H. Chemical analysis and acetylcholinesterase inhibitory effect of anthocyanin-rich red leaf tea (cv. Sunrouge). J Sci Food Agric, 2012, 92: 2379–2386
[13] 蔡丽, 梁名志, 夏丽飞, 陈林波, 孙云南. “紫娟”茶外观表象差异研究. 西南农业学报, 2010, 23: 700–703
Cai L, Liang M Z, Xia L F, Chen L B, Sun Y N. Study on exterior appearance difference of ‘Zijuan’. Southwest China J Agric Sci, 2010, 23: 700–703 (in Chinese with English abstract)
[14] 季鹏章, 梁名志, 宋维希, 蒋会兵, 马琳, 王丽, 矣兵. 茶树珍稀品种“紫娟”的叶片色素含量与叶色变化的关系研究. 西南农业学报, 2010, 23: 1860–1863
Ji P Z, Liang M Z, Song W X, Jiang H B, Ma L, Yi B. Relationship between changes of pigments content and leaf color changing in ‘Zijuan’ (Camellia sinensis var. assamica). Southwest China J Agric Sci, 2010, 23: 1860–1863 (in Chinese with English abstract)
[15] Jiang L H, Shen X J, Shoji T, Kanda T, Zhou J C, Zhao L M. Characterization and activity of anthocyanins in Zijuan tea (Camellia sinensis var. kitamura). J Agric Food Chem, 2013, 61: 3306−3310
[16] 陈林波, 夏丽飞, 孙云南, 梁明志, 张正竹, 李叶云, 宛晓春. 特异茶树品种“紫娟”叶色转变的基因表达差异分析. 茶叶科学, 2012, 32: 59–65
Chen L B, Xia L F, Sun Y N, Liang M Z, Zhang Z Z, Li Y Y, Wan X C. Analysis of differential gene expression on specific tea cultivar ‘Zijuan’ for leaf color changing. J Tea Sci, 2012, 32: 59–65 (in Chinese with English abstract)
[17] Livaka K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402–408
[18] 尹军峰, 许勇泉, 袁海波, 余书平, 韦坤坤, 陈建新, 汪芳, 吴荣梅. 名优绿茶鲜叶摊放过程中主要生化成分的动态变化. 茶叶科学, 2009, 19: 102–110
Yin J F, Xu Y Q, Yuan H B, Yu S P, Wei K K, Chen J X, Wang F, Wu R M. Dynamic change of main biochemical components of premium green tea fresh leaves during spreading. J Tea Sci, 2009, 19: 102–110 (in Chinese with English abstract)
[19] Kerio L C, Wachira F N, Wanyoko J K, Rotich M K. Characterization of anthocyanins in Kenyan teas: extraction and identification. Food Chem, 2012, 131: 31–38
[20] Matsumoto S, Takeuchi A, Hayatsu M, Kondo S. Molecular cloning of phenylalanine ammonium-lyase cDNA and classification of varieties and cultivars of tea plants (Camellia sinensis) using a tea PAL cDNA probe. Theor Appl Genet, 1994, 89: 671–675
[21] Olsen K M, Lea U S, Slimestad R, Verheul M, Lillo C. Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. J Plant Physiol, 2008, 165: 1491–1499
[22] Singh K, Kumar S, Rani A, Gulati A, Ahuja P S. Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Funct Integr Genomic, 2009, 9: 125–134
[23] Xiong L G, Li J, Li Y H, Yuan L, Liu S Q, Huang J A, Liu Z H. Dynamic changes in catechin levels and catechin biosynthesis-related gene expression in albino tea plants (Camellia sinensis L.). Plant Physiol Biochem, 2013, 71: 132–143
[24] Pang Y Z, Sarath B I, Abeysinghe, He J, He X Z, Huhman D, Mewan K M, Sumner L W, Yun J F, Dixon R A. Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering. Plant Physiol, 2013, 161: 1103–1116 |