欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (07): 966-975.doi: 10.3724/SP.J.1006.2016.00966

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个水稻显性斑点叶突变体的鉴定和基因精细定位

郭丹,施勇烽,王惠梅,张晓波,宋莉欣,徐霞,贺彦,郭梁,吴建利*   

  1. 中国水稻研究所 / 水稻生物学国家重点实验室/国家水稻改良中心,浙江杭州310006
  • 收稿日期:2015-12-29 修回日期:2016-05-09 出版日期:2016-07-12 网络出版日期:2016-05-11
  • 通讯作者: 吴建利, E-mail: beishangd@163.com
  • 基金资助:

    本研究由浙江省自然科学基金项目(LQ15C130005)和国家高技术研究发展计划(863计划)项目(2014AA10A603-15)资助。

Characterization and Gene Fine Mapping of a Rice Dominant Spotted-leaf Mutant

GUO Dan,SHI Yong-Feng,WANG Hui-Mei,ZHANG Xiao-Bo,SONG Li-Xin,XU Xia,HE Yan,GUO Liang,WU Jian-Li*   

  1. State Key Laboratory of Rice Biology / Chinese National Center for Rice Improvement / China National Rice Research Institute, Hangzhou 310006, China?
  • Received:2015-12-29 Revised:2016-05-09 Published:2016-07-12 Published online:2016-05-11
  • Contact: 吴建利, E-mail: beishangd@163.com
  • Supported by:

    This study was supported by the Natural Science Foundation of Zhejiang Province (LQ15C130005) and the National High-tech R&D Program of China (2014AA10A603-15).

摘要:

通过EMS (ethane methyl sulfonate)诱变籼稻品种IR64获得一个稳定遗传的显性斑点叶突变体HM113。在大田环境下,突变体褐色斑点在播种后3周的叶片上产生,始穗期扩散至叶鞘。与野生型IR64相比,突变体HM113的株高、结实率和千粒重等农艺性状显著下降,光合色素含量、净光合速率和可溶性蛋白含量显著降低。同时突变体CAT和SOD活性显著降低,POD活性显著上升。组织化学分析显示,突变体叶片中积累了大量活性氧,且斑点处细胞坏死。白叶枯病菌接种结果显示,HM113是一个广谱抗性增强的突变体。实时定量PCR分析表明HM113中防卫反应基因AOS2PAL4PR10PR1b等的表达大幅上调。遗传分析表明,突变体褐斑性状受单显性基因(SplHM113)控制,利用图位克隆法将该基因定位在第7染色体长臂RM21605和RM418之间,物理距离约为308 kb。本研究为褐斑基因SplHM113的克隆与功能分析奠定了基础。

关键词: 水稻, 斑点叶突变体, 白叶枯病抗性, 活性氧, 基因定位

Abstract:

A stable inherited rice spotted-leaf mutant HM113 was isolated from an EMS-induced IR64 mutant bank. Under natural conditions, brown lesions were observed on the leaves in three weeks after sowing and spread to the sheaths at the initial heading stage. Agronomic traits including the plant height, panicle length, number of panicles, number of filled grain/panicle, seed-setting rate and 1000-grain weight were decreased significantly in HM113. In addition, the photosynthetic pigment contents, net photosynthetic rate and soluble protein content in the mutant were significantly lower than those in the wild type IR64, while the MDA content was similar to that in the wild-type. Activities of CAT and SOD were significantly lower and activity of POD was significantly higher in the mutant than in IR64. Histochemical analysis showed that cell death and ROS accumulation were occurred in and around the lesions in HM113. Furthermore, disease resistance to bacterial blight pathogens was significantly enhanced in the mutant in contrast to that in the wild type IR64. Expression of defense-related genes including AOS2, PAL4, PR10,and PR1b was apparently up-regulated in the mutant. Genetic analysis indicated that the mutant trait was controlled by a novel single dominant nuclear gene, tentatively termedas SplHM113, which was detected to be located in a region around 308 kb flanked by RM21605 and RM418 on the long arm of chromosome 7. The data and populations obtained in the present study would facilitate the isolation and functional analysis of SplHM113.

Key words: Rice, Spotted-leaf mutant, Bacterial blight resistance, Reactive oxygen species, Gene mapping

[1]Heath M C. Hypersensitive response-related death. Plant Mol Biol, 2000, 44: 321–334
[2]夏启中, 吴家和, 张献龙. 与植物超敏反应(HR)相关的细胞编程性死亡. 华中农业大学学报, 2005, 24: 97–103
Xia Q Z, Wu J H, Zhang X L. Review on hypersensitive response-related PCD in plant. J Huazhong Agric Univ, 2005, 24: 97–103 (in Chinese with English abstract)
[3]Durrant W E, Dong X. Systemic acquired resistance. Annu Rev Phytopathol, 2004, 42: 185–209
[4]Hu G, Yalpani N, Briggs S P, Johal G S. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell, 1998, 10: 1095–1105
[5]Balague C, Lin B, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell, 2003, 15: 365–379
[6]Feng B H, Yang Y, Shi Y F, Shen H C, Wang H M, Huang Q N, Xu X, Lv X G, Wu J L. Characterization and genetic analysis of a novel rice spotted-leaf mutant HM47 with broad-spectrum resistance to Xanthomonas oryzae pv. oryzae. J Integr Plant Biol, 2013, 55: 473–483
[7]Shen H C, Shi Y F, Feng B H, Wang H M, Xu X, Huang Q N, Lv X G, Wu J L. Identification and genetic analysis of a novel rice spotted-leaf mutant with broad-spectrum resistance to Xanthomonas oryzae pv. oryzae. J Integr Agric, 2014, 13: 713–721
[8]李小红, 施勇烽, 张晓波, 奉保华, 宋莉欣, 王惠梅, 徐霞, 黄奇娜, 郭丹, 吴建利. 水稻斑点叶突变体hm197的鉴定及其基因定位. 中国水稻科学, 2015, 29: 447–456
Li X H, Shi Y F, Zhang X B, Feng B H, Song L X, Wang H M, Xu X, Huang Q N, Guo D, Wu J L. Identification and gene mapping of a spotted leaf mutant hm197 in rice. Chin J Rice Sci, 2015, 29: 447–456 (in Chinese with English abstract)
[9]Jung Y H, Lee J H, Agrawal G K, Rakwal R, Kim J A, Shim J K, Lee S K, Jeon J S, Koh H J, Lee Y H, Iwahashi H, Jwa N S. The rice (Oryza sativa) blast lesion mimic mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiol Biochem, 2005, 43: 397–406
[10]Wu C, Bordeos A, Madamba M R, Baraoidan M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics, 2008, 279: 605–619
[11]Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L, Wong H L, Kawasaki T, Shimamoto K. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem, 2010, 285: 11308–11313
[12]Wang L, Pei Z, Tian Y, He C. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant Microbe Interact, 2005, 18: 375–384
[13]Sun C, Liu L, Tang J, Lin A, Zhang F, Fang J, Zhang G, Chu C. RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice. J Genet Genomics, 2011, 38: 29–37
[14]Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122–133
[15]Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA, 2002, 99: 7530–7535
[16]Jiang C J, Shimono M, Maeda S, Inoue H, Mori M, Hasegawa M, Sugano S, Takatsuji H. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol Plant Microbe Interact, 2009, 22: 820–829
[17]Qiao Y, Jiang W, Lee J, Park B, Choi M S, Piao R, Woo M O, Roh J H, Han L, Paek N C, Seo H S, Koh H J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit micro 1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 2010, 185: 258–274
[18]Fekih R, Tamiru M, Kanzaki H, Abe A, Yoshida K, Kanzaki E, Saitoh H, Takagi H, Natsume S, Undan J R, Undan J, Terauchi R. The rice (Oryza sativa L.) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response. Mol Genet Genomics, 2015, 290: 611–622
[19]Arnon D I. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1–15
[20]Wellburn A R. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectro-photometers of different resolution. Plant Physiol, 2015, 144: 307–313
[21]赵世杰, 史国安, 董新纯. 植物生理学实验指导. 北京: 中国农业科学技术出版社, 2002. pp 134–143
Zhao S J, Shi G A, Dong X C. Plant Physiology Experiment Instruction. Beijing: China Agricultural Science and Technology Press, 2002. pp 134–143 (in Chinese)
[22]Huang Q N, Shi Y F, Zhang X B, Song L X, Feng B H, Wang H M, Xu X, Li X H, Guo D, Wu J L. Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice. J Integr Plant Biol, 2016, 58: 12–28
[23]Yin Z, Chen J, Zeng L, Goh M, Leung H, Khush G S, Wang G L. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant Microbe Interact, 2000, 13: 869–876
[24]Kauffman H E, Reddy A P D, Ksiek S P V, Marca S D. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rep, 1973, 57: 537–541
[25]卢扬江, 郑康乐. 提取水稻DNA的一种简易方法. 中国水稻科学, 1992, 6: 47–48
Lu Y J, Zheng K L. A simple method for isolation of rice DNA. Chin J Rice Sci, 1992, 6: 47–48 (in Chinese with English abstract)
[26]Shi Y F, Chen J, Liu W Q, Huang Q N, Shen B, Leung H, Wu J L. Genetic analysis and gene mapping of a new rolled-leaf mutant in rice (Oryza sativa L.). Sci China Ser C-Life Sci, 2009, 52: 885–890
[27]代高猛, 朱小燕, 李云峰, 凌英华, 赵芳明, 杨正林, 何光华. 水稻类病斑突变体spl31的遗传分析与基因定位. 作物学报, 2013, 39: 1223–1230
Dai G M, Zhu X Y, Li Y F, Ling Y H, Zhao F M, Yang Z L, He G H. Genetic analysis and fine mapping of a lesion mimic mutant spl31 in rice. Acta Agron Sin, 2013, 39: 1223–1230 (in Chinese with English abstract)
[28]宋莉欣, 黄奇娜, 奉保华, 施勇烽, 张晓波, 徐霞, 王惠梅, 李小红, 赵宝华, 吴建利. 水稻斑点叶突变体spl21的鉴定与基因定位. 作物学报, 2015, 41: 1519–1528
Song L X, Huang Q N, Feng B H, Shi Y F, Zhang X B, Xu X, Wang H M, Li X H, Zhao B H, Wu J L. Characterization and gene mapping of a spotted-leaf mutant spl21 in rice (Oryza sativa L.). Acta Agron Sin, 2015, 41: 1519–1528 (in Chinese with English abstract)
[29]Xiao G Q, Zhang H W, Lu X Y, Huang R F. Characterization and mapping of a novel light-dependent lesion mimic mutant lmm6 in rice (Oryza sativa L.). J Integr Agric, 2015, 14: 1687–1696
[30]Jacks Thomas J, Davidonis Gayle H. Superoxide, hydrogen peroxide, and the respiratory burst of fungally infected plant cells. Mol Cellular Biochem, 1996, 158: 77–79
[31]Asada K. Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant, 1992, 85: 235–241
[32]Minibayeva F, Beckett R P, Kranner I. Roles of apoplastic peroxidases in plant response to wounding. Phytochemistry, 2015, 112: 122–129
[33]Kawano T. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep, 2003, 21: 829–837
[34]Whitaker C, Beckett R P, Minibayevab F V, Kranner I. Production of reactive oxygen species in excised, desiccated and cryopreserved explants of Trichilia dregeana Sond. S Afr J Bot, 2010, 76: 112–118
[35]金杨. 水稻类病变突变体spl5细胞坏死机制及其抗病性的研究. 浙江师范大学硕士学位论文, 浙江金华, 2009
Jin Y. Mechanisms of Cell Death and Its Resistance in Rice Lesion Mimic Mutant spl5. MS Theises of Zhejiang Normal University, Jinhua, China, 2009 (in Chinese with English abstract)
[36]Kaurilind E, Xu E, Brosche M. A genetic framework for H2O2 induced cell death in Arabidopsis thaliana. BMC Genomics, 2015, 16: 837–853
[37]Kariola T, Brader G, Li J, Palva E T. Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell, 2005, 17: 282–294
[38]Chern M, Fitzgerald H A, Canlas P E, Navarre D A, Ronald P C. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact, 2005, 18: 511–520
[39]Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet J G, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S. Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol, 2007, 63: 847–860
[40]钟振泉, 罗文龙, 刘永柱, 王慧, 陈志强, 郭涛. 一份新的水稻斑点叶突变体spl32的鉴定和基因定位. 作物学报, 2015, 41: 861–871
Zhong Z Q, Luo W L, Liu Y Z, Wang H, Chen Z Q, Guo T. Characterization of a novel spotted leaf mutant spl32 and mapping of Spl32(t) gene in rice (Oryza sativa). Acta Agron Sin, 2015, 41: 861–871 (in Chinese with English abstract)
[41]Hwang S H, Hwang D J. Isolation and characterization of the rice NPR1 promoter. Plant Biotechnol Rep, 2010, 4: 29–35
[42]Yuan Y X, Zhong S H, Li Q, Zhu Z R, Lou Y G, Wang L Y, Wang J J, Wang M Y, Li Q L, Yang D L, He Z H. Functional analysis of rice NPR1-like genes reveals that OsNPR1/NHI is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J, 2007, 5: 313–324
[43]Li Z, Zhang Y X, Liu L, Liu Q E, Bi Z Z, Yu N, Cheng S H, Cao L Y. Fine mapping of the lesion mimic and early senescence 1 (lmes1) in rice (Oryza sativa). Plant Physiol Biochem, 2014, 80: 300–307
[44]Chen X F, Pan J W, Cheng J, Jiang G H, Jin Y, Gu Z M, Qian Q, Zhai W X, Ma B J. Fine genetic mapping and physical delimitation of the lesion mimic gene spotted leaf 5 (spl5) in rice (Oryza sativa L.). Mol Breed, 2009, 24: 387–395
[45]Babu R, Jiang C J, Xu X, Kottapalli K R, Takatsuji H, Miyao A, Hirochika H, Kawasaki S. Isolation, fine mapping and expression profiling of a lesion mimic genotype, spl(NF4050-8) that confers blast resistance in rice. Theor Appl Genet, 2011, 122: 831–854
 
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!