作物学报 ›› 2016, Vol. 42 ›› Issue (10): 1462-1470.doi: 10.3724/SP.J.1006.2016.01462

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇



  1. 1中国农业科学院研究生院, 北京 100081; 2中国农业科学院作物科学研究所, 北京 100081; 3山西大学生物工程学院, 山西太原 030006;  4 北京市辐射中心, 北京 100875; 5山西省农业科学院作物科学研究所, 山西太原 030031
  • 收稿日期:2016-02-06 修回日期:2016-05-09 出版日期:2016-10-12 网络出版日期:2016-06-06
  • 通讯作者: 郭林, E-mail: guolin@caas.cn, Tel: 010-82105851; 杨建平, E-mail: yangjianping02@caas.cn, Tel/Fax: 010-82105859
  • 基金资助:

    本研究由国家重点研发计划试点专项(SQ2016ZY03002918), 国家转基因生物新品种培育重大专项(2016ZX08010002-003-002), 北京市自然科学基金(重点)项目(6151002)和中国农业科学院科技创新工程项目资助。

Transcription Characteristics of ZmPHYA1 and ZmPHYA2 under Different Light Treatments in Maize

YANG Zong-Ju1,2,**,YAN Lei2,3,**,SONG Mei-Fang2,4,SU Liang2,MENG Fan-Hua2,LI Hong-Dan1,2,BAI Jian-Rong5,GUO Lin2,*,YANG Jian-Ping2,*   

  1. 1 Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 College of Biology Engineering, Shanxi University, Taiyuan 030006, China; 4 Beijing Radiation Center, Beijing 100875, China; 5 Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China
  • Received:2016-02-06 Revised:2016-05-09 Published:2016-10-12 Published online:2016-06-06
  • Contact: Guo Lin, E-mail: guolin@caas.cn, Tel: 010-82105851; Yang JIanping E-mail: yangjianping02@caas.cn, Tel/Fax: 010-82105859
  • Supported by:

    This study was supported by the National Research and Development Program (SQ2016ZY03002918), the Genetically Modified Organisms Breeding Major Projects of China (2016ZX08010002-003-002), the Key Project of Beijing Natural Science Foundation (6151002) and the Agricultural Science and Technology Innovation Program of CAAS.


光敏色素是一类红光/远红光受体, 它们在植物体内有非活性形式的红光吸收型(Pr)和活性形式远红光吸收型(Pfr) 2种状态, 通常其活性形式负责调控植物的种子萌发、株高、开花时间和避荫性等生长发育过程。在禾本科中, 光敏色素只有PHYAPHYBPHYC三个基因亚家族, 古四倍体化造成的玉米光敏色素基因有6个成员, 即PHYA1PHYA2PHYB1PHYB2PHYC1PHYC2光敏色素A参与抑制下胚轴的伸长、促进张开子叶和花青素的积累、阻断持续远红光条件下的变绿。为了评价ZmPHYA1ZmPHYA2对光的响应能力及其功能差异, 本研究采用实时定量PCR技术分析玉米自交系B73和Mo17中ZmPHYA1ZmPHYA2对不同光照处理响应的表达模式。结果表明玉米光敏色素A主要在叶片和花丝中表达, 并且ZmPHYA1转录丰度是ZmPHYA2的2~8倍; 玉米自交系B73和Mo17中胚轴在黑暗、远红光和蓝光条件下较红光和白光下更长。ZmPHYA1ZmPHYA2的转录水平在持续远红光和蓝光条件下均较高; 并且均较迅速响应黑暗到远红光和蓝光光质转换, 但是前者的丰度显著高于后者, ZmPHYA1在远红光下更重要, 而ZmPHYA2在蓝光下更重要。ZmPHYA1ZmPHYA2同样响应于黑暗到红光和白光的转换, 并且ZmPHYA1ZmPHYA2表达模式基本一致。ZmPHYA1ZmPHYA2的表达均能响应长日照和短日照处理, 但是ZmPHYA1转录丰度高于ZmPHYA2的2~5倍。以上结果表明, ZmPHYA1ZmPHYA2的转录能有效地响应各种光处理, 可能ZmPHYA1在作物改良上比ZmPHYA2更有效。本研究为进一步了解ZmPHYA1ZmPHYA2基因功能以及评价二者的光反应能力提供了理论基础。

关键词: 玉米, 光敏色素, 光信号转导, 表达分析, 光处理


Plant phytochromes are a family of red/far-red light photoreceptors, which have two forms in plant: inactive red light absorbing form (Pr) and active far-red light absorbing form (Pfr). During plant growth and developmental processes, phytochromes play pivotal roles in regulations of seed germination, plant height, flowering time, and shade-avoidance. In the grasses, three subfamilies are present: PHYA, PHYB and PHYC. In maize, an ancient genome duplication has increased the family member to six: PHYA1, PHYA2, PHYB1, PHYB2, PHYC1, and PHYC2. Phytochrome A facilitates the inhibition of hypocotyl elongation, opening of the apical hook, expansion of cotyledons, accumulation of anthocyanin and blocking of greening by continuous FR (FRc) light. In order to evaluate the light response capability and difference of transcription abundance between ZmPHYA1 and ZmPHYA2, we employed quantitative real-time PCR (qRT-PCR) assay to investigate the expression patterns of ZmPHYA1 and ZmPHYA2 in the inbred line B73 and Mo17 with different light treatments. The results indicated that both ZmPHYA1 and ZmPHYA2 had a high expression level in leaf and silk, and the transcription abundance of ZmPHYA1 was 2–8 times higher than that of ZmPHYA2. Inbred lines of both B73 and Mo17 possessed longer mesocotyls in dark, far-red and blue light conditions than in red or white light conditions. Both ZmPHYA1 and ZmPHYA2 had a high expression level in far-red and blue lights and rapidly responded to dark-to-far-red and dark-to-blue transitions. ZmPHYA1 was more important under far-red light, so was ZmPHYA2 in blue light. Both of the genes could rapidly respond to transitions from dark to red or white light with similar expression pattern. The both genes also respond to long-day or short-day treatments, however the transcription abundance of ZmPHYA1 was 2–5 times higher than that of ZmPHYA2 during the treatments. All the results suggested that the transcription of both ZmPHYA1 and ZmPHYA2 could rapidly responded to different light treatments; ZmPHYA1 might be more effective than ZmPHYA2 in crop improvement. Our results provide a theoretical basis for the function study and evaluation of light response ability for both ZmPHYA1 and ZmPHYA2.

Key words: Maize, Phytochrome, Light signaling transduction, Expression analysis, Light treatment

[1]Fankhauser C, Chory J. Light control of plant development. Annu Rev Cell Dev Biol, 1997, 13: 203–229
[2]Deng X W, Quail P H. Signalling in light-controlled development. Semin Cell Dev Biol, 1999, 10: 121–129
[3]Casal J J, Candia A N, Sellaro R. Light perception and signalling by phytochrome A. J Exp Bot, 2014, 65: 2835–2845
[4]Wang H Y, Deng X W. Dissecting the phytochrome A-dependent signaling network in higher plants. Trends Plant Sci, 2003, 8: 172–178
[5]Jiao Y, Lau O, Deng X. Light-regulated transcriptional networks in higher plants. Nat Rev Genet, 2007, 8: 217–230
[6]Li J, Li G, Wang H, Deng X W. Phytochrome Signaling Mechanisms. Arabidopsis Book, 2011, 9: e0149
[7]Quail P H. Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol, 2002, 3: 85–93
[8]Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol, 2008, 59: 281−311
[9]Quail P H. Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol, 2002, 3: 85−93
[10]詹克慧, 李志勇, 侯佩, 习雨琳, 肖阳, 孟凡华, 杨建平. 利用修饰光敏色素信号途径进行品种改良的可行性. 中国农业科学, 2012, 45: 3249−3255
Zhan K H, Li Z Y, Hou P, Xi Y L, Xiao Y, Meng F H, Yang J P. A new strategy for crop improvement through modification of phytochrome signaling pathways. Sci Agric Sin, 2012, 45: 3249−3255 (in Chinese with English abstract)
[11]Boylan M T, Quil P H. Oat phytochrome is biologically active in transgenic tomatoes. Plant Cell, 1989, 1: 765−773
[12]Gyula P, Schäfer E, Nagy F. Light perception and signalling in higher plants. Curr Opin Plant Biol, 2003, 6: 446–452
[13]Quail P H. Photosensory perception and signalling in plant cells: new paradigms? Curr Opin Plant Biol, 2002, 14: 180–188
[14]Sharrock R A, Clack T, Goosey L. Differential activities of the Arabidopsis PHYB/D/E phytochromes in complementing PHYB mutant phenotypes. Plant Mol Biol Rep, 2003, 52: 135−142
[15]Reed J W, Nagatani A, Elich T D, Fagan M, Chory J. Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol, 1994, 104: 1139–1149
[16]Botto J F, Sanchez R A, Whitelam G C, Casal J J. Phytochrome A mediates the promotion of seed germination by very low fluences of light and canopy shade light in Arabidopsis. Plant Physiol, 1996, 110: 439–444
[17]Shinomura T, Nagatani A, Hanzawa H, Kubota M, Watanabe M, Furuya M. Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci USA, 1996, 93: 8129–8133
[18]Furuya M. Molecular properties and biogenesis of phytochrome I and II. Adv Biophys, 1989, 25: 133–167
[19]Quail P H. An emerging molecular map of the phytochromes. Plant Cell Environ, 1997, 20: 657–665
[20]Franklin K A, Whitelam G C. Phytochrome a function in red light sensing. Plant Signal Behav, 2007, 2: 383–385
[21]Whitelam G C, Devlin P F. Roles of different phytochromes in Arabidopsis photomorphogenesis. Plant Cell Environ, 1997, 20: 752–758
[22]Casal J J, Luccioni L G, Oliverio K A, Boccalandro H E. Light, phytochrome signalling and photomorphogenesis in Arabidopsis. Photochem Photobiol Sci, 2003, 2: 625–636
[23]Clough R C, Vierstra R D. Phytochrome degradation. Plant Cell Environ, 1997, 20: 713–721
[24]Nagy F, Schäfer E. Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu Rev Plant Biol, 53: 329–355
[25]Sharrock R A, Clack T. Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol, 2002, 130: 442–456
[26]Johnson E, Bradley M, Harberd N P, Whitelam G C. Photoresponses of light-grown phyA mutants of Arabidopsis (phytochrome A is required for the perception of daylength extensions). Plant Physiol, 1994, 105: 141–149
[27]Yanovsky M J, Kay S A. Molecular basis of seasonal time                 measurement in Arabidopsis. Nature, 2002, 419: 308–312
[28]Yanovsky M J, Casal J J, Whitelam G C. Phytochrome A, phytochrome B and HY4 are involved in hypocotyl growth responses to natural radiation in Arabidopsis: weak de-etiolation of the phyA mutant under dense canopies. Plant Cell Environ, 1995, 18: 788–794
[29]Casal J J. Phytochrome A enhances the promotion of hypocotyl growth caused by reductions in levels of phytochrome B in its far-red-light-absorbing form in light-grown Arabidopsis thaliana. Plant Physiol, 1996, 112: 965–973
[30]Yanovsky M J, Alconada-Magliano T M, Mazzella M A, Gatz C, Thomas B, Casal J J. Phytochrome A affects stem growth, anthocyanin synthesis, sucrose-phosphate-synthase activity and neighbour detection in sunlight-grown potato. Planta, 1998, 205: 235–241
[31]Takano M, Inagaki N, Xie X, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell, 2005, 17: 3311–3325
[32]Garg A K, Sawers R J H, Wang H, Kim J K, Walker J M, Brutnell T P, Wu R J. Light-regulated overexpression of an Arabidopsis phytochrome A gene in rice alters plant architecture and increases grain yield. Planta, 2006, 223: 627–636
[33]Thiele A, Herold M, Lenk I, Quail P H, Gatz C. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiol, 1999, 120: 73–82
[34]Heyer A G, Mozley D, Landschutze V, Thomas B, Gatz C. Function of phytochrome A in potato plants as revealed through the study of transgenic plants. Plant Physiol, 1995, 109: 53–61
[35]Boccalandro H E, Ploschuk E L, Yanovsky M J, Sánchez R A, Gatz C, Casal J J. Increased phytochrome B alleviates density          effects on tuber yield of field potato crops. Plant Physiol, 2003, 133: 1539–1546
[36]Robson P R, McCormac A C, Irvine A S, Smith H. Genetic engineering of harvest index in tobacco through overexpression of a phytochrome gene. Nat Biotechnol, 1996, 14: 995–998
[37]Chen A, Li C X, Hu W, Lau M Y, Lin H Q, Rockwell N C, Martin S S, Jernstedt J A, Lagarias J C, Dubcovsky J, Lagarias J C. PHYTOCHROME C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proc Natl Acad Sci USA, 2014, 111: 10037–10044
[38]Mathews S, Sharrock R A. The phytochrome gene family in grasses (Poaceae): a phylogeny and evidence that grasses have a subset of the loci found in dicot angiosperms. Mol Biol Evol, 1996, 13: 1141–1150
[39]Mathews S, Sharrock R A. Phytochrome gene diversity. Plant Cell Environ, 1997, 20: 666–671
[40]Liu X B, Zhang X Y, Wang Y X, Sui Y Y, Zhang S L, Herbert S J, Ding G. Soil degradation: a problem threatening the sustainable development of agriculture in Northeast China. Plant Soil Environ, 2010, 56: 87–97
[41]Gao Y, Jiang W, Dai Y, Xiao N, Zhang C, Li H, Lu Y, Wu M, Tao X, Deng D, Chen J. A maize phytochrome interacting factor 3 improves drought and salt stress tolerance in rice. Plant Mol Biol, 2015, 87: 413–428
[42]Rajeevan M S, Ranamukhaarachi D G, Vernon S D, Unger E R. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods, 2001, 25: 443–451
[43]Sheehan M J, Farmer P R, Brutnell T P. Structure and expression of maize phytochrome family homeologs. Genetics, 2004, 167: 1395–1405
[44]Markelz N H, Costich D E, Brutnell T P. Photomorphogenic                responses in maize seedling development. Plant Physiol, 2004, 133: 1578–1591
[45]Basu D, Dehesh K, Schneider-Poetsch H J, Harrington S E, McCouch S R, Quail P H. Rice PHYC gene: structure, expression, map position and evolution. Plant Mol Biol, 2000, 44: 27–42
[46]Childs K L, Miller F R, Cordonnier-Pratt M M, Pratt L H, Morgan P W, Mullet J E. The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol, 1997, 113: 611–619
[47]Gaut B S. Patterns of chromosomal duplication in maize and their implications for comparative maps of the grasses. Genome Res, 2001, 11: 55–66
[48]Gaut B S, Doebley J F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA, 1997, 94: 6809–6814
[49]Wilson W A, Harrington S E, Woodman W L, Lee M, Sorrells M E, McCouch S R. Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids. Genetics, 1999, 153: 453–473
[50]Sheehan M J, Kennedy L M, Costich D E, Lee M, Sorrells M E, McCouch S R. Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. Plant J, 2007, 49: 338–353
[51]Boylan M T, Quail P H. Oat phytochrome is biologically active in transgenic tomatoes. Plant Cell, 1989, 1: 765–773
[52]Nagatani A, Kay S A, Deak M, Chua N H, Furuya M. Rice type I phytochrome regulates hypocotyl elongation in transgenic tobacco seedlings. Proc Natl Acad Sci USA, 1991, 88: 5207–5211
[53]Takano M, Kanegae H, Shinomura T, Miyao A, Hirochika H, Furuya, M. Isolation and characterization of rice phytochrome A mutants. Plant Cell, 2001, 13: 521–534
[54]Sawers R J H, Linley P J, Farmer P R, Hanley N P, Costich D E, Terry M J, Brutnell T P. Elongated mesocotyl1, a phytochrome- deficient mutant of maize. Plant Physiol, 2002, 130: 155–163
[55]Halliday K J, Salter M G, Thingnaes E, Whitelam G C. Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J, 2003, 33: 875–885
[56]Asami O, Hironori I, Kyoko I K, Takano M, Izawa T. Molecular dissection of the roles of phytochrome in photoperio¬dic flowering in rice. Plant Physiol, 2011, 157: 1128–1137

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[4] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[10] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[11] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[12] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[13] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[14] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[15] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
Full text



No Suggested Reading articles found!