欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (10): 1487-1494.doi: 10.3724/SP.J.1006.2016.01487

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米氮素敏感性差异自交系的表达谱分析

葛敏,吕远大,张体付,周玲,林峰,赵涵*   

  1. 江苏省农业科学院农业生物技术研究所/江苏省农业生物学重点实验室,江苏南京210014
  • 收稿日期:2016-02-22 修回日期:2016-06-20 出版日期:2016-10-12 网络出版日期:2016-07-28
  • 通讯作者: 赵涵,E-mail:zhaohan@jaas.ac.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31271728)和江苏省农业科技自主创新资金项目(CX(14)2009)资助。

Global Transcriptome Analysis in High- and Low-Nitrogen Responsive Inbred Lines of Maize

GE Min, LYU Yuan-Da, ZHANG Ti-Fu, ZHOU Ling, LIN Feng, and ZHAO Han*   

  1. Institute of Biotechnology, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2016-02-22 Revised:2016-06-20 Published:2016-10-12 Published online:2016-07-28
  • Contact: Zhao Han,E-mail:zhaohan@jaas.ac.cn
  • Supported by:

    ThisworkwassupportedbygrantfromtheNaturalScienceFoundationofChina(31271728)andJiangsuAgricultureScienceandTechnologyInnovationFund[CX(14)2009].

摘要:

玉米材料的氮肥敏感性存在显著差异,但基因表达模式尚不清楚。基于此,本研究以玉米氮敏感型自交系 B73和钝感型自交系Mo17为材料,对足氮(sufficient nitrogen,简称SN)和低氮(limiting nitrogen,简称LN)条件下苗期叶片组织的转录组进行分析。对于叶片总氮含量,敏感型B73在足氮和低氮条件下存在显著差异,而钝感型Mo17的差异小且不显著。基因表达差异分析显示Mo17在两种氮环境下差异基因的数目达13 867个,在低氮环境下基因上调比例高于下调比例1.9倍;B73差异基因的数目为10 028个,低氮环境基因上调比例低于下调比例。基因聚类分析也显示低氮环境下,钝感型Mo17基因表达上调或下调的幅度高于敏感型B73。差异基因双尾方差分析表明受氮环境和基因型共同影响的差异基因为342个,功能主要集中在与氨基酸代谢、光合作用、次级代谢及基因复制表达等相关途径。综上所述,在低氮条件下氮钝感型Mo17较敏感型B73激活更多的基因来提高植株对氮的吸收和同化能力,被激活的基因可能与玉米氮肥转运和利用有关。

关键词: 玉米, 氮素, 氮胁迫, 转录组分析, 氮素利用率

Abstract:

Different maize genotypes have exhibited their variations in nitrogen responsiveness, however, the corresponding gene expression patterns are unexplored yet. Here, we performed a comprehensive transcriptome profiling of high- and low-nitrogen responsiveness genotypes in the conditions of sufficient and limiting nitrogen (SN and LN) supplies. Under LN supply, B73, a high nitrogen responsive genotype, accumulated a much lower nitrogen content than under SN condition in the leaf. Meanwhile, the N content of Mo17 didn’t show a significant difference between two treatments. Furthermore, RNAseq revealed that 13 867 and 10 028 genes were significantly differentially expressed in Mo17 and B73 with the treatments, with 9044, 4233 up-regulated and 4823, 5795 down-regulated under N limitation. Showing that, in LN supply, Mo17 had more expressed genes and higher expression variations than B73. A total of 342 differentially expressed genes with a significant interaction genotype by nitrogen were detected, which could be clustered into four groups. The functional annotations of genes demonstrated that these genes were mainly involved in amino acid metabolism, photosynthesis and biosynthesis of secondary metabolites, suggesting these genes may have their roles in modulating maize nitrogen use efficiency. The study promotes a better understanding of the mechanisms on maize nitrogen response, and provides candidate genes for breeding of crop nitrogen use efficiency in the future.

Key words: Maize, Nitrogen, Nitrogenstress, Transcriptomeprofiling, Nitrogenuseefficiency(NUE)

[1]GutierrezRA.Systemsbiologyforenhancedplantnitrogennutrition.Science,2012,336:1673–1675 [2]MarchiveC,RoudierF,CastaingsL,BrehautV,BlondetE,ColotV,MeyerC,KrappA.NuclearretentionofthetranscriptionfactorNLP7orchestratestheearlyresponsetonitrateinplants.NatCommun,2013,4:1713 [3]BiYM,MeyerA,DownsGS,ShiX,El-KereamyA,LukensL,RothsteinSJ.HighthroughputRNAsequencingofahybridmaizeanditsparentsshowsdifferentmechanismsresponsivetonitrogenlimitation.BMCGenomics,2014,15:77 [4]HumbertS,SubediS,CohnJ,ZengB,BiYM,ChenX,ZhuT,McNicholasPD,RothsteinSJ.Genome-wideexpressionprofilingofmaizeinresponsetoindividualandcombinedwaterandnitrogenstresses.BMCGenomics,2013,14:3 [5]HvistendahlM.China'spushtoaddbysubtractingfertilizer.Science,2010,327:801 [6]MollR,KamprathE,JacksonW.Analysisandinterpretationoffactorswhichcontributetoefficiencytonitrogenutilization.AgronJ,1982,74:562–564 [7]YamayaT,ObaraM,NakajimaH,SasakiS,HayakawaT,SatoT.Geneticmanipulationandquantitativetraitlocimappingfornitrogenrecyclinginrice.JExpBot,2002,53:917–925 [8]ObaraM,SatoT,SasakiS,KashibaK,NaganoA,NakamuraI,EbitaniT,YanoM,YamayaT.IdentificationandcharacterizationofaQTLonchromosome2forcytosolicglutaminesynthetasecontentandpaniclenumberinrice.TheorApplGenet,2004,110:1–11 [9]ObaraM,TamuraW,EbitaniT,YanoM,SatoT,YamayaT.Fine-mappingofqRL6.1,amajorQTLforrootlengthofriceseedlingsgrownunderawiderangeofNH4+concentrationsinhydroponicconditions.TheorApplGenet,2010,121:535–547 [10]SunH,QianQ,WuK,LuoJ,WangS,ZhangC,MaY,LiuQ,HuangX,YuanQ,HanR,ZhaoM,DongG,GuoL,ZhuX,GouZ,WangW,WuY,LinH,FuX.HeterotrimericGproteinsregulatenitrogen-useefficiencyinrice.NatGenet,2014,46:652–656 [11]HuangX,QianQ,LiuZ,SunH,HeS,LuoD,XiaG,ChuC,LiJ,FuX.NaturalvariationattheDEP1locusenhancesgrainyieldinrice.NatGenet,2009,41:494–497 [12]AgramaHA,MoussaME,NaserME,TarekMA,IbrahimAH.MappingofQTLfordownymildewresistanceinmaize.TheorApplGenet,1999,99:519–523 [13]CoqueM,GallaisA.Genomicregionsinvolvedinresponsetograinyieldselectionathighandlownitrogenfertilizationinmaize.TheorApplGenet,2006,112:1205–1220 [14]CoqueM,MartinA,VeyrierasJB,HirelB,GallaisA.GeneticvariationforN-remobilizationandpostsilkingN-uptakeinasetofmaizerecombinantinbredlines.3.QTLdetectionandcoincidences.TheorApplGenet,2008,117:729–747 [15]米国华,陈范骏,春亮,郭亚芬,田秋英,张福锁.玉米氮高效品种的生物学特征.植物营养与肥料学报,2007,13:155–159 MiGH,ChenFJ,ChuaL,GouYF,TianQY,ZhangFS.Biologicalcharacteristicsofnitrogenefficientmaizegenotypes.PlantNutrFertSci,2007,13:155–159(inChinesewithEnglishabstract) [16]ChenQY,LiuZP,WangBB,WangXF,LaiJS,TianF.Transcriptomesequencingrevealstherolesoftranscriptionfactorsinmodulatinggenotypebynitrogeninteractioninmaize.PlantCellRep,2015,34:1761–1771 [17]GelliM,DuoYC,KondaAR,ZhangC,HoldingD,DweikatI.Identificationofdifferentiallyexpressedgenesbetweensorghumgenotypeswithcontrastingnitrogenstresstolerancebygenome-widetranscriptionalprofiling.BMCGenomics,2014,15:179 [18]SchlüterU,MascherM,ColmseeC,ScholzU,Br?utigamA,FahnenstichH,SonnewaldU.Maizesourceleafadaptationtonitrogendeficiencyaffectsnotonlynitrogenandcarbonmetabolismbutalsocontrolofphosphatehomeostasis.PlantPhysiol,2012,160:1384–1406. [19]葛敏,吕远大,李坦,张体付,张晓林,赵涵.玉米Dof转录因子家族的全基因组鉴定与分析.中国农业科学,2014,47:4563–4572 GeM,LüYD,LiT,ZhangTF,ZhangXL,ZhaoH.Genome-wideidentificationandanalysisofDoftranscriptionfactorfamilyinmaize.SciAgricSin,2014,47:4563–4572(inChinesewithEnglishabstract) [20]PattersonN,PriceA,ReichD.Populationstructureandeigenanalysis.PLoSGenet,2006,2(12):e190 [21]WidiezT,ElKafafielS,GirinT,BerrA,RuffelS,KroukG,VayssièresA,ShenWH,CoruzziGM,GojonA,LepetitM.Highnitrogeninsensitive9(HNI9)-mediatedsystemicrepressionofrootNO3-uptakeisassociatedwithchangesinhistonemethylation.ProcNatlAcadSciUSA,2011,108:13329–13334 [22]XieC,MaoX,HuangJ,DingY,WuJ,DongS,KongL,GaoG,LiCY,WeiL.KOBAS2.0:awebserverforannotationandidentificationofenrichedpathwaysanddiseases.NuclAcidsRes,2011,39:W316–W322 [23]YangXS,WuJ,ZieglerTE,YangX,ZayedA,RajaniMS,ZhouD,BasraAS,SchachtmanDP,PengM,ArmstrongCL,CaldoRA,MorrellJA,LacyM,StaubJM.Geneexpressionbiomarkersprovidesensitiveindicatorsofinplantanitrogenstatusinmaize.PlantPhysiol,2011,157:1841–1852 [24]LiuKH,HuangCY,TsayYF.CHL1isadual-affinitynitratetransporterofArabidopsisinvolvedinmultiplephasesofnitrateuptake.PlantCell,1999,11:865–874 [25]MartinA,LeeJ,KicheyT,GerentesD,ZivyM,TatoutC,DuboisF,BalliauT,ValotB,DavantureM,Terce-LaforgueT,QuillereI,CoqueM,GallaisA,Gonzalez-MoroMB,BethencourtL,HabashDZ,LeaPJ,CharcossetA,PerezP,MurigneuxA,SakakibaraH,EdwardsKJ,HirelB.Twocytosolicglutaminesynthetaseisoformsofmaizearespecificallyinvolvedinthecontrolofgrainproduction.PlantCell,2006,18:3252–3274 [26]BrauerEK,RochonA,BiYM,BozzoGG,RothsteinSJ,ShelpBJ.Reappraisalofnitrogenuseefficiencyinriceoverexpressingglutaminesynthetase1.PhysiolPlant,2011,141:361–372 [27]CastaingsL,CamargoA,PocholleD,GaudonV,TexierY,Boutet-MerceyS,TaconnatL,RenouJP,Daniel-VedeleF,FernandezE,MeyerC,KrappA.Thenoduleinception-likeprotein7modulatesnitratesensingandmetabolisminArabidopsis.PlantJ,2009,57:426–435 [28]ChardinC,GirinT,RoudierF,MeyerC,KrappA.TheplantRWP-RKtranscriptionfactors:keyregulatorsofnitrogenresponsesandofgametophytedevelopment.JExpBot,2014,65:5577–5587

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[13] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[14] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[15] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!