欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (05): 669-677.doi: 10.3724/SP.J.1006.2017.00669

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

茶树越冬芽在休眠与萌发时期的物质交流变化及其分子调控

唐湖1,2,**,郝心愿2,**,王璐2,肖斌1,王新超2,*,杨亚军1,2,*   

  1. 1西北农林科技大学园艺学院,陕西杨凌 712100; 2 中国农业科学院茶叶研究所 / 国家茶树改良中心 / 农业部茶树生物学与资源利用重点实验室,浙江杭州31008
  • 收稿日期:2016-10-17 修回日期:2017-01-21 出版日期:2017-05-12 网络出版日期:2017-02-17
  • 通讯作者: 王新超, E-mail: xcw75@tricaas.com, Tel: 0571-86653162 ; 杨亚军: Email: yjyang@tricaas.com
  • 基金资助:

    本研究由国家自然科学基金项目(31370690), 国家现代农业产业技术体系建设专项(CARS-23)和中国农业科学院农业科技创新工程(CAAS-ASTIP-2014-TRICAAS)资助。

Molecular Regulation and Substance Exchange Dynamics at Dormancy and Budbreak Stages in Overwintering Buds of Tea Plant

TANG Hu1,2,**,HAO Xin-Yuan2,**,WANG Lu2,XIAO Bin1,WANG Xin-Chao2,*,YANG Ya-Jun1,2,*   

  1. 1 College of Horticulture, Northwest A&F University, Yangling 712100, China; 2 Tea Research Institute of Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Hangzhou 310008, China
  • Received:2016-10-17 Revised:2017-01-21 Published:2017-05-12 Published online:2017-02-17
  • Contact: Wang Xinchao, E-mail: xcw75@tricaas.com, Tel: 0571-86653162 ; Yang Yajun: Email: yjyang@tricaas.com
  • Supported by:

    This study was supported by the National Science Foundation of China (31370690), the Earmarked Fund for China Agriculture Research System (CARS-23), and the Chinese Academy of Agricultural Sciences through an Innovation Project for Agricultural Sciences and Technology (CAAS-ASTIP-2014-TRICAAS).

摘要:

以特早生茶树品种龙井43和中生茶树品种碧云为材料,利用钙黄素处理茶树茎段,检测越冬芽在休眠与萌发时期与其他器官的物质交流情况。利用同源比对鉴定胼胝质水解相关基因,并分析其序列特征及在冬季不同时期的表达模式。结果表明,越冬芽在茶树生长阶段和休眠阶段都存在着与着生茎段和母叶间的物质交流;从茶树越冬芽休眠形成到解除的不同时期,其物质交流存在“强-弱-强”的变化规律,但龙井43的与碧云相比存在较短的物质交流减弱时期;两种茶树的物质交流变化模式与鉴定到的茶树胼胝质水解正向调控相关基因CsGLU1的表达模式密切相关;启动子序列分析进一步证实CsGLU1启动子区有多个与激素信号以及低温和休眠响应相关转录因子结合的保守序列。茶树越冬芽在休眠和非休眠状态下都存在与茎和母叶之间的物质交流,且物质交流强弱与茶树越冬芽休眠状态改变密切相关。CsGLU1可能是参与胼胝质水解调控,改变茶树越冬芽物质交流水平,进而影响茶树休眠状态的关键基因。这对明确茶树越冬芽休眠状态变化和深入揭示不同萌发物候型茶树休眠机理有重要意义。

关键词: 茶树, 越冬芽休眠, 物质交流, 钙黄素

Abstract:

Early sprouting cultivar Longjing 43 and later sprouting cultivar Biyun were employed in this study. The levels of substance exchange were monitored by detecting the fluorescence signal in calcein treated overwintering buds. The glucanase related genes were identified by sequence homology analysis. Their characteristics and expression patterns during different time of winter were further analyzed. The substance exchanges were detected either in stem-bud unit or mother leaf-stem unit. From the initial formation to release in dormancy, the substance exchange in overwintering buds showed strong-weak-strong variation patterns in both test cultivars, however, the duration of weak exchange stage was much shorter in Longjing 43 than in Biyun. Moreover, there was a close correlation between substance exchange variation pattern and the expression pattern of CsGLU1, a gene identified in tea plant with positive callose hydrolyzation activity. On the basis of promoter sequence analysis, plenty of transcription factor binding sequences related to hormone signaling, cold stimulation and dormancy regulation were found in CsGLU1 promoter region, which validates its putative functions in dormancy regulation. In conclusion, overwintering buds of tea plant have substance exchange with stem and mother leaf both in dormancy and non-dormancy status, furthermore, the variation of substance exchange level was consistent to the changes of dormancy status. CsGLU1 is a callose hydrolyzation related gene, which is supposed to be a key gene regulating tea plant dormancy transition through affecting the substance exchange in overwintering buds. The study provides meaningful results for understanding the changes of dormancy statuses in overwintering buds and deeply exploring the regulation mechanism in tea plant with different sprouting phenophase.

Key words: Tea plant, Overwinter bud dormancy, Substances exchange, Calcein

[1]Ruttink T, Arend M, Morreel K, Storme V, Rombaut sS, Fromm J, Bhalerao R, Boerjan W, Rohde A. A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell, 2007. 19: 2370–2390 [2]Cooke J E, Eriksson M E, Junttila O. The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ, 2012, 35: 1707–1728 [3]Rinne P L, van der Schoot C. Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development, 1998. 125: 1477–1485 [4]Nathalie D, Annika J, Baba K, Schrader J, Sj?din A, Bhalerao R R, Resman L, Trygg J, Moritz T, Bhalerao R P. Environmental and hormonal regulation of the activity–dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant J, 2007. 50: 557–573 [5]van der Schoot C, Rinne P L. Dormancy cycling at the shoot apical meristem: transitioning between self-organization and self-arrest. Plant Sci, 2011. 180: 120–131 [6]Low H P, Gréco B, Tanahashi Y, Gallant J, Jones S N, Billings-Gagliardi S, Recht L D, Schwartz W J. Plasmodesmata at the crossroads between development, dormancy, and defense. Canad J Bot, 2004. 81: 1182–1197 [7]Rinne P L, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjarvi J, and van der Schoot C. Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1, 3-beta-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell, 2011, 23: 130–146 [8]Rinne P L, Kaikuranta P M, van der Schoot C. The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J, 2001, 26: 249–264 [9]晏嫦妤, 李家贤, 黄华林, 何雨媚. 茶树休眠的研究进展. 安徽农业科学, 2012, 40: 10387–10389 Yan C Y, Li J X, Huang H L, He Y M. Research progress of tea plant dormancy. J Anhui Agric Sci, 2012. 40: 10387–10389 (in Chinese with English abstract) [10]钱利生, 沈生荣, 潘根生. 茶树新梢内源激素的HPLC分析及日变化. 茶叶科学, 1996, (2): 135–139 Qian L S, Shen S R, Pan G S. HPLC analysis and diurnal variation of the endogenous hormones in shoots of tea plants. J Tea Sci, 1996, (2): 135–139 (in Chinese with English abstract) [11]黄亚辉, 粟本文, 郑红发, 曾贞, 刘霞林. 茶树春梢萌动期间内源激素含量的变化. 植物生理学通讯, 2001, 37: 306–307 Hang Y H, Li B W, Zheng H F, Zeng Z, Liu X L. Changes of endohormone in prouting shoot of tea plant. Plant Physiol Commun, 2001, 37: 306–373 (in Chinese with English abstract) [12]禹利君, 史云峰, 肖海云, 刘富知, 刘仲华. 不同物候型茶树内源GA3和ABA的变化及其对腋芽萌发调控的影响. 作物学报, 2008, 34: 277–283 Yu L J, Shi Y F, Xiao H Y, Liu F Z, Liu Z H. Dynamic changes of endogenous GA3 and ABA contents in tea culticars with different phenological characters and their impact on the regulation axillary buds sprouting. Acta Agron Sin, 2008, 34: 277–283 (in Chinese with English abstract) [13]Wang X, Hao X, Ma C, Cao H, Yue C, Wang L, Zeng J, Yang Y. Identification of differential gene expression profiles between winter dormant and sprouting axillary buds in tea plant ( Camellia sinensis) by suppression subtractive hybridization. Tree Genet Genom, 2014, 10: 1149–1159 [14]王新超, 杨亚军, 马春雷, 金基强, 曹红利. 茶树细胞周期蛋白基因的克隆与表达. 西北植物学报, 2011, 31: 2365–2372 Wang X C, Yang Y J, Ma C L, Jin J Q, Cao H L. Cloning and expression analysis of cyclin gene (CsCYC1) of tea plant. Acta Bot Boreali-Occident Sin, 2011, 31: 2365–2372 (in Chinese with English abstract) [15]王新超, 马春雷, 杨亚军, 金基强, 马建强, 曹红利. 茶树细胞周期蛋白依赖激酶(CsCDK)基因cDNA全长克隆与分析. 园艺学报, 2012, 39: 333–342 Wang X C, Ma C L, Yang Y J, Jin J Q, Ma J Q, Cao H L. cDNA cloning and expression analysis of cyclin-dependent kinase (CsCDK) gene in tea plant. Acta Hort Sin, 2012, 39: 333–342 (in Chinese with English abstract) [16]Doxey A C, Yaish M W, Moffatt B A, Griffith M, McConkey B J. Functional divergence in the Arabidopsis beta-1,3-glucanase gene family inferred by phylogenetic reconstruction of expression states. Mol Biol Evol, 2007, 24: 1045–1055 [17]Rinne P L, Paul L K, Vahala J, Kangasjarvi J, van der Schoot C. Axillary buds are dwarfed shoots that tightly regulate GA pathway and GA-inducible 1,3-beta-glucanase genes during branching in hybrid aspen. J Exp Bot, 2016. doi:10.1093/jxb/erw352 [18]Chang S, Puryear J, and Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep, 1993, 11: 113–116 [19]Hao X, Horvath D P, Chao W S, Yang Y, Wang X, Xiao B. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). Int J Mol Sci, 2014, 15: 22155–22172 [20]Jian L C, Li P H, Sun L H, Chen T H H. Alterations in ultrastructure and subcellular localization of Ca2+ in poplar apical bud cells during the induction of dormancy. J Exp Bot, 1997, 48: 1195–1207 [21]刘芳, 王家艳, 王晓丽, 周蕴薇. 细叶百合鳞茎在低温解除休眠过程中茎尖细胞超微结构的变化. 园艺学报, 2013, 40: 1110–1118 Liu F, Wang J Y, Wang X L, Zhou Y W. The apical bud cell ultra-structure changes of Lilium pumilum bulbs during breaking dormancy under refrigerated condition. Acta Hort Sin, 2013, 40: 1110–1118 (in Chinese with English abstract) [22]Ruonala R, Rinne P L, Kangasj?rvi J, van der Schoot C. CENL1 expression in the rib meristem affects stem elongation and the transition to dormancy in Populus. Plant Cell, 2008, 20: 59–74 [23]Knox J P, Benitez-Alfonso Y. Roles and regulation of plant cell walls surrounding plasmodesmata. Curr Opin Plant Biol, 2014, 22: 93–100 [24]Paul L K, Rinne P L, and van der Schoot C. Refurbishing the plasmodesmal chamber: a role for lipid bodies? Front Plant Sci, 2014. 5: 40 [25]Nagar P K, Kumar A. Changes in endogenous gibberellin activity during winter dormancy in tea (Camellia sinensis (L.) O. Kuntze). Acta Physiol Plant, 2000, 22: 439–443 [26]Cao H, Wang L, Yue C, Hao X, Wang X, Yang Y. Isolation and expression analysis of 18 CsbZIP genes implicated in abiotic stress responses in the tea plant (Camellia sinensis). Plant Physiol Biochem, 2015, 97: 432–442 [27]Wang X C, Zhao Q Y, Ma C L, Zhang Z H, Cao H L, Kong Y M, Yue C, Hao X Y, Chen L, Ma J Q, Jin J Q, Li X, Yang Y J. Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genom, 2013, 14: 415 [28]郝心愿, 曹红利, 杨亚军, 王新超, 马春雷, 肖斌. 茶树生长素响应因子基因CsARF1的克隆与表达分析. 作物学报, 2013, 39: 389–397 Hao H X, Cao C H, Yang Y J, Wang X C, Ma C L, Xiao B. Cloning and expression analysis of auxin response factor gene (CsARF1) in tea plant (Camellia sinensis [L.] O. Kuntze), Acta Agro Sin, 2013, 39: 389–397 (in Chinese with English abstract) [29]Jimenez S, Lawton-Rauh A L, Reighard G L, Abbott A G, Bielenberg D G. Phylogenetic analysis and molecular evolution of the dormancy associated MADS-box genes from peach. BMC Plant Biol, 2009, 9: 81

[1] 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638.
[2] 彭章, 童华荣, 梁国鲁, 石艺琦, 袁连玉. 茶树叶片和胚根原生质体的分离及PEG诱导融合[J]. 作物学报, 2018, 44(03): 463-470.
[3] 郝心愿,岳川,唐湖,钱文俊,王玉春,王璐,王新超,杨亚军. 茶树β-淀粉酶基因CsBAM3的克隆及其响应低温的表达模式[J]. 作物学报, 2017, 43(10): 1417-1425.
[4] 曹红利,王璐,钱文俊,郝心愿,杨亚军,王新超. 茶树CsbZIP4转录因子正调控拟南芥对盐胁迫响应[J]. 作物学报, 2017, 43(07): 1012-1020.
[5] 袁连玉,陈应娟,魏旭,童华荣*. 茶树金属耐受蛋白基因CsMTP11的克隆及功能分析[J]. 作物学报, 2017, 43(05): 708-717.
[6] 陈林波,夏丽飞,田易萍,李梅,宋维希,梁名志,江昌俊. 基于数字基因表达谱分析的茶树花不育基因挖掘[J]. 作物学报, 2017, 43(02): 210-217.
[7] 周天山,王新超,余有本,肖瑶,钱文俊,肖斌,杨亚军. 紫芽茶树类黄酮生物合成关键酶基因表达与总儿茶素、花青素含量相关性分析[J]. 作物学报, 2016, 42(04): 525-531 .
[8] 钱文俊,岳川,曹红利,郝心愿,王璐,王玉春,黄玉婷,王博,王新超,肖斌,杨亚军. 茶树中性/碱性转化酶基因CsINV10的克隆与表达分析[J]. 作物学报, 2016, 42(03): 376-388.
[9] 王博,曹红利,黄玉婷,胡玉荣,钱文俊,郝心愿,王璐,杨亚军,王新超. 茶树生长素外运载体基因CsPIN3的克隆与表达分析[J]. 作物学报, 2016, 42(01): 58-69.
[10] 周艳华,曹红利,岳川,王璐,郝心愿,王新超*,杨亚军*. 冷驯化不同阶段茶树DNA甲基化模式的变化[J]. 作物学报, 2015, 41(07): 1047-1055.
[11] 马春雷,姚明哲,王新超,金基强,马建强1陈亮. 茶树叶绿素合成相关基因克隆及在白叶1号不同白化阶段的表达[J]. 作物学报, 2015, 41(02): 240-250.
[12] 曹红利,岳川,周艳华,王璐,郝心愿,杨亚军*,王新超*. 茶树bZIP转录因子基因CsbZIP1的克隆与表达定位[J]. 作物学报, 2014, 40(09): 1702-1709.
[13] 王丽鸳,韦康,张成才,成浩. 茶树花转录组微卫星分布特征[J]. 作物学报, 2014, 40(01): 80-85.
[14] 蒋会兵,宋维希,矣兵,李友勇,马玲,陈林波,田易萍,段志芬,刘本英,梁名志. 云南茶树种质资源的表型遗传多样性[J]. 作物学报, 2013, 39(11): 2000-2008.
[15] 岳川,曾建明,曹红利,郝心愿,章志芳,王新超,杨亚军. 茶树赤霉素受体基因CsGID1a的克隆与表达分析[J]. 作物学报, 2013, 39(04): 599-608.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!